
Topics
• Memory Hierarchy
• Locality of Reference
• Cache Design

– Direct Mapped
– Associative

Caches
March 16, 2000

15-213

class18.ppt

CS 213 S’00– 2 –class18.ppt

Computer System

diskDiskdiskDisk

Memory-I/O busMemory-I/O bus

ProcessorProcessor

CacheCache

MemoryMemory
I/O

controller
I/O

controllerI/O
controller

I/O
controller

I/O
controller

I/O
controller

DisplayDisplay NetworkNetwork

interrupt

CS 213 S’00– 3 –class18.ppt

Levels in Memory Hierarchy

CPUCPU
regsregs

C
a
c
h
e

MemoryMemory diskdisk

size:
speed:
$/Mbyte:
line size:

200 B
2 ns

8 B

Register Cache Memory Disk Memory
32KB - 4MB
4 ns
$100/MB
32 B

128 MB
60 ns
$1.50/MB
8 KB

20 GB
8 ms
$0.05/MB

larger, slower, cheaper

8 B 32 B 8 KB

cache virtual memory

CS 213 S’00– 4 –class18.ppt

Alpha 21164 Chip Photo

Microprocessor
Report 9/12/94

Caches:
L1 data
L1 instruction
L2 unified
TLB
Branch history

CS 213 S’00– 5 –class18.ppt

Alpha 21164 Chip Caches

Caches:
L1 data
L1 instruction
L2 unified
TLB
Branch history

Right Half
L2

Right Half
L2

L1

I
n
s
t
r.

L1
Data

L2
Tags

L3 Control

CS 213 S’00– 6 –class18.ppt

Locality of Reference
Principle of Locality:

• Programs tend to reuse data and instructions near those they
have used recently.

• Temporal locality: recently referenced items are likely to be
referenced in the near future.

• Spatial locality: items with nearby addresses tend to be
referenced close together in time.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
*v = sum;Locality in Example:

• Data
– Reference array elements in succession

(spatial)
• Instructions

– Reference instructions in sequence (spatial)
– Cycle through loop repeatedly (temporal)

CS 213 S’00– 7 –class18.ppt

Caching: The Basic Idea
Main Memory

• Stores words
A–Z in example

Cache
• Stores subset of the

words
4 in example

• Organized in lines
– Multiple words
– To exploit spatial

locality
Access

• Word must be in cache
for processor to access

Big, Slow Memory

A
B
C
•
•
•
Y
Z

Small,
Fast Cache

A
B
G
H

Processor

CS 213 S’00– 8 –class18.ppt

Basic Idea (Cont.)

Maintaining Cache:
• Each time the processor performs a load or store, bring line

containing the word into the cache
– May need to evict existing line

• Subsequent loads or stores to any word in line performed within
cache

A
B
G
H

Initia
l A

B
C
D

Read C
A
B
C
D

Y
Z
C
D

Read ZRead D

Cache holds 2
lines

Each with 2
words

Load line C+D
into cache

“Cache miss”

Word already
in cache

“Cache hit”

Load line Y+Z
into cache

Evict oldest
entry

CS 213 S’00– 9 –class18.ppt

• Between any two levels, memory is divided into lines (aka “blocks”)
• Data moves between levels on demand, in line-sized chunks.
• Invisible to application programmer

– Hardware responsible for cache operation
• Upper-level lines a subset of lower-level lines.

a

a
b

Access word w in line a (hit)

a

a
b

Access word v in line b (miss)
w

b

a
b

a
b

v

Accessing Data in Memory Hierarchy

High
Level

Low
Level

CS 213 S’00– 10 –class18.ppt

Design Issues for Caches
Key Questions:

• Where should a line be placed in the cache? (line placement)
• How is a line found in the cache? (line identification)
• Which line should be replaced on a miss? (line replacement)
• What happens on a write? (write strategy)

Constraints:
• Design must be very simple

– Hardware realization
– All decision making within nanosecond time scale

• Want to optimize performance for “typical” programs
– Do extensive benchmarking and simulations
– Many subtle engineering tradeoffs

CS 213 S’00– 11 –class18.ppt

Direct-Mapped Caches
Simplest Design

• Each memory line has a unique cache location
Parameters

• Line (aka block) size B = 2b

– Number of bytes in each line
– Typically 2X–8X word size

• Number of Sets S = 2s

– Number of lines cache can hold
• Total Cache Size = B*S = 2b+s

Physical Address
• Address used to reference main memory
• n bits to reference N = 2n total bytes
• Partition into fields

– Offset: Lower b bits indicate which byte within line
– Set: Next s bits indicate how to locate line within cache
– Tag: Identifies this line when in cache

n-bit Physical Address
t s b

tag set index offset

CS 213 S’00– 12 –class18.ppt

Indexing into Direct-Mapped Cache

• Use set index bits
to select cache set

Set 0: 0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

Set 1:

Set S–1:

•
•
•

t s b

tag set index offset
Physical Address

CS 213 S’00– 13 –class18.ppt

Direct-Mapped Cache Tag Matching
Identifying Line

• Must have tag match high
order bits of address

• Must have Valid = 1
0 1 • • • B–1Tag Valid

Selected Set:

t s b

tag set index offset
Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

CS 213 S’00– 14 –class18.ppt

Direct Mapped Cache Simulation
N=16 byte addresses, B=2 bytes/line, S=4 sets, E=1
entry/set
Address trace (reads):

0 [0000] 1 [0001] 13 [1101] 8 [1000] 0 [0000]
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

x
t=1 s=2 b=1

xx x

1 0 m[1] m[0]
v tag data

0 [0000] (miss)

(1)
1 0 m[1] m[0]
v tag data

1 1 m[13] m[12]

13 [1101] (miss)

(2)

1 1 m[9] m[8]
v tag data

8 [1000] (miss)

(3)
1 0 m[1] m[0]
v tag data

1 1 m[13] m[12]

0 [0000] (miss)

(4)

CS 213 S’00– 15 –class18.ppt

Why Use Middle Bits as Index?

High-Order Bit Indexing
• Adjacent memory lines would

map to same cache entry
• Poor use of spatial locality

Middle-Order Bit Indexing
• Consecutive memory lines map

to different cache lines
• Can hold N-byte region of

address space in cache at one
time

4-line Cache High-Order
Bit Indexing

Middle-Order
Bit Indexing

00
01
10
11

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

CS 213 S’00– 16 –class18.ppt

Direct Mapped Cache Implementation
(DECStation 3100)
tag set byte

offset

valid tag (16 bits) data (32 bits)

data

=

hit

16,384 sets

31 30 29 19 18 17 16 15 14 13 5 4 3 2 1 0

CS 213 S’00– 17 –class18.ppt

Properties of Direct Mapped Caches
Strength

• Minimal control hardware overhead
• Simple design
• (Relatively) easy to make fast

Weakness
• Vulnerable to thrashing
• Two heavily used lines have same cache index
• Repeatedly evict one to make room for other

Cache Line

CS 213 S’00– 18 –class18.ppt

Vector Product Example

Machine
• DECStation 5000
• MIPS Processor with 64KB direct-mapped cache, 16 B line size

Performance
• Good case: 24 cycles / element
• Bad case: 66 cycles / element

float dot_prod(float x[1024], y[1024])
{
float sum = 0.0;
int i;
for (i = 0; i < 1024; i++)
sum += x[i]*y[i];

return sum;
}

CS 213 S’00– 19 –class18.ppt

Thrashing Example

• Access one element from each array per iteration

x[1]
x[0]

x[1020]

•
•
•

•
•
•

x[3]
x[2]

x[1021]
x[1022]
x[1023]

y[1]
y[0]

y[1020]

•
•
•

•
•
•

y[3]
y[2]

y[1021]
y[1022]
y[1023]

Cache
Line

Cache
Line

Cache
Line

Cache
Line

Cache
Line

Cache
Line

CS 213 S’00– 20 –class18.ppt

x[1]
x[0]

x[3]
x[2]

y[1]
y[0]

y[3]
y[2]

Cache
Line

Thrashing Example: Good Case

Access Sequence
• Read x[0]

– x[0], x[1], x[2], x[3] loaded
• Read y[0]

– y[0], y[1], y[2], y[3] loaded
• Read x[1]

– Hit
• Read y[1]

– Hit
• • • •
• 2 misses / 8 reads

Analysis
• x[i] and y[i] map to different cache

lines
• Miss rate = 25%

– Two memory accesses / iteration
– On every 4th iteration have two

misses
Timing

• 10 cycle loop time
• 28 cycles / cache miss
• Average time / iteration =

10 + 0.25 * 2 * 28

CS 213 S’00– 21 –class18.ppt

x[1]
x[0]

x[3]
x[2]

y[1]
y[0]

y[3]
y[2]

Cache
Line

Thrashing Example: Bad Case

Access Pattern
• Read x[0]

– x[0], x[1], x[2], x[3] loaded
• Read y[0]

– y[0], y[1], y[2], y[3] loaded
• Read x[1]

– x[0], x[1], x[2], x[3] loaded
• Read y[1]

– y[0], y[1], y[2], y[3] loaded
• • •
• 8 misses / 8 reads

Analysis
• x[i] and y[i] map to same cache

lines
• Miss rate = 100%

– Two memory accesses / iteration
– On every iteration have two

misses
Timing

• 10 cycle loop time
• 28 cycles / cache miss
• Average time / iteration =

10 + 1.0 * 2 * 28

CS 213 S’00– 22 –class18.ppt

Set Associative Cache
Mapping of Memory Lines

• Each set can hold E lines
– Typically between 2 and 8

• Given memory line can map to any entry within its given set
Eviction Policy

• Which line gets kicked out when bring new line in
• Commonly either “Least Recently Used” (LRU) or pseudo-random

– LRU: least-recently accessed (read or written) line gets evicted

Set i:
0 1 • • • B–1Tag Valid

•
•
•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

LRU State
Line 0:
Line 1:

Line E–1:

CS 213 S’00– 23 –class18.ppt

Set 0:

Set 1:

Set S–
1:

•
•
•

t s b

tag set index offset
Physical Address

Indexing into 2-Way Associative Cache
• Use middle s bits to

select from among S = 2s
sets

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

CS 213 S’00– 24 –class18.ppt

2-Way Associative Cache Tag Matching
Identifying Line

• Must have one of the
tags match high order
bits of address

• Must have Valid = 1 for
this line

Selected Set:

t s b

tag set index offset
Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

CS 213 S’00– 25 –class18.ppt

2-Way Set Associative Simulation
N=16 addresses, B=2 bytes/line, S=2 sets, E=2 entries/set
Address trace (reads):

0 [0000] 1 [0001] 13 [1101] 8 [1000] 0 [0000]

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

0 (miss)

13 (miss)

8 (miss)
(LRU replacement)

0 (miss)
(LRU replacement)

xx
t=2 s=1 b=1

x x

1 00 m[1] m[0]

v tag data v tag data

v tag data v tag data
1 00 m[1] m[0] 1 11 m[13] m[12]

1 10 m[9] m[8]

v tag data v tag data
1 11 m[13] m[12]

1 10 m[9] m[8]

v tag data v tag data
1 00 m[1] m[0]

CS 213 S’00– 26 –class18.ppt

Two-Way Set Associative Cache
Implementation

• Set index selects a set from the cache
• The two tags in the set are compared in parallel
• Data is selected based on the tag result

Cache Data
Cache Line 0

Cache TagValid

:: :

Cache Data
Cache Line 0

Cache Tag Valid

: ::

Set Index

Mux 01Sel1 Sel0

Cache Line

CompareAdr Tag Compare

OR

Hit

Adr Tag

CS 213 S’00– 27 –class18.ppt

Fully Associative Cache
Mapping of Memory Lines

• Cache consists of single set holding E lines
• Given memory line can map to any line in set
• Only practical for small caches

Entire Cache

0 1 • • • B–1Tag Valid

•
•
•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

LRU State
Line 0:
Line 1:

Line E–1:

CS 213 S’00– 28 –class18.ppt

Fully Associative Cache Tag Matching
Identifying Line

• Must check all of the tags for
match

• Must have Valid = 1 for this line

t b

tag offset
Physical Address

=
?

= 1?

• Lower bits of address
select byte or word
within cache line

0 1 • • • B–1Tag Valid

•
•
•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

•
•
•

CS 213 S’00– 29 –class18.ppt

Fully Associative Cache Simulation
N=16 addresses, B=2 bytes/line, S=1 sets, E=4 entries/set
Address trace (reads):

0 [0000] 1 [0001] 13 [1101] 8 [1000] 0 [0000]

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

xxx
t=3 s=0 b=1

x

1 000 m[1] m[0]
v tag data
1 110 m[13] m[12]

13 (miss)

(2)

v tag data
8 (miss)

(3)
1 000 m[1] m[0]
1 110 m[13] m[12]
1 100 m[9] m[8]

1 00 m[1] m[0]
v tag data

0 (miss)

(1) set ø

CS 213 S’00– 30 –class18.ppt

Write Policy
• What happens when processor writes to the cache?
• Should memory be updated as well?

Write Through:
• Store by processor updates cache and memory.
• Memory always consistent with cache
• Never need to store from cache to memory
• ~2X more loads than stores

Processor
Cache

Memory
Store

Load
Cache
Load

CS 213 S’00– 31 –class18.ppt

Write Strategies (Cont.)
Write Back:

• Store by processor only updates cache line
• Modified line written to memory only when it is evicted

– Requires “dirty bit” for each line
» Set when line in cache is modified
» Indicates that line in memory is stale

• Memory not always consistent with cache

Processor
Cache

Memory
Store

Load Cache
Load

Write
Back

CS 213 S’00– 32 –class18.ppt

Multi-Level Caches

size:
speed:
$/Mbyte:
line size:

200 B
2 ns

8 B

8-64 KB
2 ns

32 B

128 MB DRAM
60 ns
$1.50/MB
8 KB

9 GB
8 ms
$0.05/MB

larger, slower, cheaper

MemoryMemory diskdisk

TLB

L1 Icache

L1 Dcacheregs L2
Cache

Processor

1-4MB SRAM
6 ns
$100/MB
32 B

larger line size, higher associativity, more likely to write back

Options: separate data and instruction caches, or a unified cache

CS 213 S’00– 33 –class18.ppt

Processor Chip

Alpha 21164 Hierarchy

• Improving memory performance was a main design goal
• Earlier Alpha’s CPUs starved for data

L1 Data
1 cycle latency

8KB, direct
Write-through
Dual Ported
32B lines

L1 Instruction
8KB, direct
32B lines

Regs.
L2 Unified

8 cycle latency
96KB

3-way assoc.
Write-back

Write allocate
32B/64B lines

L3 Unified
1M-64M
direct

Write-back
Write allocate
32B or 64B

lines

Main
Memory

Up to 2GB

CS 213 S’00– 34 –class18.ppt

Bandwidth Matching
Challenge

• CPU works with short cycle times
• DRAM (relatively) long cycle times
• How can we provide enough bandwidth between

processor & memory?
Effect of Caching

• Caching greatly reduces amount of traffic to main
memory

• But, sometimes need to move large amounts of
data from memory into cache

Trends
• Need for high bandwidth much greater for

multimedia applications
– Repeated operations on image data

• Recent generation machines (e.g., Pentium III)
greatly improve on predecessors

CPU

cache

M

bus

Short
Latency

Long
Latency

CS 213 S’00– 35 –class18.ppt

High Bandwidth Memory Systems
CPU

cache

M

bus

mux

CPU

cache

M

bus

Solution 1
High BW DRAM

Solution 2
Wide path between memory & cache

Example:
Page Mode DRAM
RAMbus

Example: Alpha AXP 21064
256 bit wide bus, L2 cache,
and memory.

CS 213 S’00– 36 –class18.ppt

Cache Performance Metrics
Miss Rate

• fraction of memory references not found in cache
(misses/references)

• Typical numbers:
3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
• time to deliver a line in the cache to the processor (includes time

to determine whether the line is in the cache)
• Typical numbers:

1 clock cycle for L1
3-8 clock cycles for L2

Miss Penalty
• additional time required because of a miss

– Typically 25-100 cycles for main memory

