15-213

Caches
March 16, 2000

Topics
e Memory Hierarchy
e Locality of Reference
e Cache Design
— Direct Mapped
— Associative

cl ass18. ppt

Computer System

Processor I< interrupt

Cache

Memory-1/0 bus

1/0
controller

1/0
controller

‘ Display I ‘ NetworkI

cl ass18. ppt i, CS 213 S00

1/0
controller

‘ Memory I

Levels iIn Memory Hierarchy

virtual memory

CPU
regs
Register
size: 200 B
speed: 2 ns
$/Mbyte:
line size: 8B

cache

< > <

C

C

h

e
Cache Memory
32KB - 4MB 128 MB
4 ns 60 ns
$100/MB $1.50/MB
328 8 KB

>

Disk Memory

20 GB
8 ms
$0.05/MB

Iarger, slower, cheaEer I

cl ass18. ppt

Hay wmuu

Photo

'CS 213 SDO

1D

I 21164 Ch

i eupeg 1|
- 4iH o

ol g gl iy am e

cl ass18. ppt

>

SN >
n N = =
N — e o
D N\ = 7
[ENe)) O T "
(@) (I] - (D) c
S+ o © s =

o - - =
oo O w N e 3)
- Q C T .= S c
oo &) mn <
= - N A=
> mw 1 1 JF m

Alpha 21164 Chip Caches

L3 Control
Right Half
Caches: L2
L1 data

L1 instruction
L2 unified
TLB

Branch history

Right Half
L2

cl ass18. ppt -5 CS 213 S00

Locality of Reference

Principle of Locality:

e Programs tend to reuse data and instructions near those they
have used recently.

e Temporal locality: recently referenced items are likely to be
referenced in the near future.

e Spatial locality: items with nearby addresses tend to be
referenced close together in time.

sum = O;
for (i =0; 1 < n; i++4)
]] sum += af[i];
Locality in Example: *v = sum
e Data
— Reference array elements in succession
(spatial)

e Instructions
— Reference instructions in sequence (spatial)

— Cycle through loop repeatedly (temporal)
cl ass18. ppt

Caching: The Basic ldea

Main Memory

e Stores words
A-Z in example

Cache

e Stores subset of the
words

4 in example
e Organized in lines
— Multiple words
— To exploit spatial
locality

Access

e \WWord must be in cache
for processor to access

cl ass18. ppt

Big, Slow Memory

Small,
Fast Cache
Processor A
B
<«
G
H

\ 4
N|<[|e ¢ o|JO|T|>

Basic Idea (Cont.)

Initia Read C Read D Read Z
A A A Y
B B B Z
G C C C
H D D D
Cache holds 2 Load line C+D Word already Load line Y+Z
lines Into cache In cache Into cache
Each with 2 “Cache miss” “Cache hit” Evict oldest
words entry

Maintaining Cache:

e Each time the processor performs a load or store, bring line
containing the word into the cache

— May need to evict existing line

e Subsequent loads or stores to any word in line performed within
cache

cl ass18. ppt

Accessing Data in Memory Hierarchy

e Between any two levels, memory is divided into lines (aka “blocks”™)
Data moves between levels on demand, in line-sized chunks.
e Invisible to application programmer
— Hardware responsible for cache operation
e Upper-level lines a subset of lower-level lines.

Accesi word win line a (hit) Access word V in line bA(miss)
w Y,
High a a a
Level
b
A
b
Low b b b
Level a a a

cl ass18. ppt

Design Issues for Caches

Key Questions:
e Where should a line be placed in the cache? (line placement)
e How is a line found in the cache? (line identification)
e Which line should be replaced on a miss? (line replacement)
e What happens on a write? (write strategy)

Constraints:
e Design must be very simple
— Hardware realization
— All decision making within nanosecond time scale
e Want to optimize performance for “typical’” programs
— Do extensive benchmarking and simulations
— Many subtle engineering tradeoffs

cl ass18. ppt

Direct-Mapped Caches

Simplest Design
e Each memory line has a unique cache location

Parameters
e Line (aka block) size B = 2P
— Number of bytes in each line
— Typically 2X-8X word size
e Number of Sets S = 2°
— Number of lines cache can hold

« Total Cache Size = B*S = obs n-bit Physical Address

Physical Address t S b
e Address used to reference main memory
e n bits to reference N = 2" total bytes tag set index offset

e Partition into fields
— Offset: Lower b bits indicate which byte within line
— Set: Next s bits indicate how to locate line within cache
— Tag: Identifies this line when in cache

cl ass18. ppt

Indexing into Direct-Mapped Cache

Set O: Tag |[valid| |O]|1|= = =|B-1
e Use set index bits

to select cache set Set 1: Tag |[valid| |O]|1|= = =|B-1

—> e
Set S-1: Tag |[valid| |O]|1|= = =|B-1

A
(\
t S b

tag set index offset

Physical Address

cl ass18. ppt

Direct-Mapped Cache Tag Matching

Identifying Line
e Must have tag match high

order bits of address =17
e Must have Valid = 1 Selected Set: i
=7 Tag |[valid| |Of 1= = =B

e Lower bits of address
/—“—\ select byte or word
within cache line

t S b

tag setindex offset

Physical Address

cl ass18. ppt

t=1 s=2

Direct Mapped Cache Simulation

b=1

X

XX

X

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

(1)

(3)

cl ass18. ppt

N=16 byte addresses, B=2 bytes/line, S=4 sets, E=1
entry/set
Address trace (reads):

O [0000] 1 [0001] 13 [1101] 8 [1000] O [0000]

O [O000] (miss) 13 [1101] (miss)
v tag data v tag data
(2)
8 [1000] (miss) O [O000] (miss)
v tag data v tag data
(4)

Why Use Middle Bits as Index?

A—line Cache High-Order Middle-Order
Bit Indexing Bit Indexing
i w0 7 et
oL | o1 27 o |
0010 7] 0010 |
11 0011 ¥] 0011
High-Order Bit Indexing 0100 0100
e Adjacent memory lines would 0101 0101
map to same cache entry 0110 0110 |
= Poor use of spatial locality 0111 0111
Middle-Order Bit Indexing 1000 1000
e Consecutive memory lines map 1001 1001
to different cache’lines 1010 1010 |
e Can hold N-byte region of 1011 1011
%drﬁieress space in cache at one 1100 1100
1101 1101
1110 1110 |
1111 1111

cl ass18. ppt

Direct Mapped Cache Implementation
(DECStation 3100)

.................. 5432 10

313029

byte
offset

valid tag (16 bits)

data (32 bits)

cl ass18. ppt

v

>

(1)

T

data

16,384 sets

Properties of Direct Mapped Caches

Strength
e Minimal control hardware overhead
e Simple design
e (Relatively) easy to make fast
Weakness
e Vulnerable to thrashing
e Two heavily used lines have same cache index
e Repeatedly evict one to make room for other

Cache Line

T
P

cl ass18. ppt

Vector Product Example

float dot prod(float x[1024], y[1024])
{
fl oat sum = 0. O;
Int 1
for (I =0; 1 < 1024; i ++)
sum += x[i1]*y[I];
return sum

Machine

e DECStation 5000

e MIPS Processor with 64KB direct-mapped cache, 16 B line size
Performance

e Good case: 24 cycles / element
e Bad case: 66 cycles / element

cl ass18. ppt

x[0]
x[1]
x[2]
X[3]

X[1020]
x[1021]
x[1022]
X[1023]

Thrashing

N

—

Cache
Line

>~ Cache
Line

Cache
Line

Example

y[O]
y[1]
y[2]
y[3]

y[1020]
y[1021]
y[1022]
y[1023]

—

e Access one element from each array per iteration

cl ass18. ppt

Cache
Line

>~ Cache
Line

Cache
Line

Thrashing

x[1]

X[2] \.

X[3]

X[0]
.

Access Seguence
e Read x[O]

— X[0], x[1], x[2], x[3] loaded

Read y[O]

- y[O], y[1], y[2], y[3] loaded

Read x[1]
— Hit

Read y[1]
— Hit

cl ass18. ppt

y[O]
y[1]
y[2]
y[3]

2 misses / 8 reads

Example: Good Case

N

Cache

Line

-

Analysis

e X[i] and y[i] map to different cache
lines

e Miss rate = 25%
— Two memory accesses / iteration

— On every 4th iteration have two
misses

Timing
e 10 cycle loop time
e 28 cycles / cache miss
e Average time / iteration =
10 + 0.25 * 2 * 28

Thrashing Example: Bad Case

X[0] y[0] Y
X[1] Q y[1] \l . Cache
X[2] \ y[2] \. Line

X[3] y[3] D
Access Pattern Analysis
e Read x[0] = X[i] and y[i] map to same cache
lines
— X[0], x[1], x[2], x[3] loaded « Miss rate = 100%
* Read y[0] — Two memory accesses / iteration
= y[0], yI1l. y[2], y[3] loaded — On every iteration have two
e Read X[l] misses
— X[0], x[1], x[2], x[3] loaded Timing
e Read y[1] e 10 cycle loop time
—y[0], y[11, y[2], y[3] loaded e 28 cycles / cache miss

e Average time / iteration =
10+ 1.0 *2 * 28

e 8 misses / 8 reads

cl ass18. ppt

Set Associative Cache
Mapping of Memory Lines

e Fach set can hold E lines

— Typically between 2 and 8
e Given memory line can map to any entry within its given set

Eviction Policy
e Which line gets kicked out when bring new line in
e Commonly either “Least Recently Used” (LRU) or pseudo-random
— LRU: least-recently accessed (read or written) line gets evicted

LRU State
Line O: Tag |[valid| |O]1|= = =|B-1
Set i:
Line 1: Tag ||Valid| |O]1]|= = =Bl
Line E-1: Tag |[valid| |Of 1= = =B

cl ass18. ppt

Indexing into 2-Way Associative Cache

idl o] 1] = =[B
- Use middle s bits to Set O: Tag |Valid e I P
select from among S = 23 Tag ||Valid 5
sets Set 1- Tag |Valid| |O]1]|= = =Bl
' Tag |[Valid] [0] 1]|= = =[B-
— ®

T Valid] [0] 1 | = =B

Set S— ag vt
1- Tag |[valid| |O]1|= = =|B-1

A
(\
t S b

tag setindex offset

Physical Address

cl ass18. ppt

2-Way Assocliative Cache Tag Matching
Identifying Line

e Must have one of the

tags match high order = 17?
bits of address
- Ml_Jst_have Valid = 1 for Selected Set: i
o —~ Tag |[valid| [O]1]|= = =|B-1

e Lower bits of address
,—“—\ select byte or word

t S b within cache line

tag setindex offset

Physical Address

cl ass18. ppt

2-Way Set Associative Simulation

t=2 s=1 b=1 N=16 addresses, B=2 bytes/line, S=2 sets, E=2 entries/set
Address trace (reads):
O [0000] 1 [0001] 13 [1101] 8 [1000] O [0000]

XX X X

v tag data v tag data
0000

0001 " O (miss)
0010 "
0011

0100

0101 I
0110 |
0111

1000 v tag data v tag data
1001 I _
1010 " 8 (miss)
1011 (LRU replacement)

1100 v tag data v tag data
1101

1110 0 (miss)
1111 (LRU replacement)
cl ass18. ppt

v tag data v tag data

13 (miss)

Two-Way Set Assocliative Cache

Implementation

e Set index selects a set from the cache
e The two tags in the set are compared in parallel

e Data is selected based on the tag result

Set Index
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Line O Cache Line O
+«———»
Adr Ta v v 4 v Adr Tag
Com}oa\r }&Sell I Mux O Selg_/{ gn—pare D
OR

cl ass18. ppt

y Cache Line

Fully Associative Cache
Mapping of Memory Lines

e Cache consists of single set holding E lines
e Given memory line can map to any line in set
e Only practical for small caches

Entire Cache

LRU State
Line O: Tag ||Valid| [Of1[= = =B
Line 1: Tag |[valid| |Of 1= = =B
Line E—L: Tag ||Valid| [Of 1 [= = =B

cl ass18. ppt

Fully Associative Cache Tag Matching

Identifying Line |
e Must check all of the tags for i
match |_Tag Validl [0 1 | = =B

e Must have Valid = 1 for this line v

{ Tag |[Valig] [Of1]|® < <|B-

N
l

Tag |[valid| |O]|1|= = =|B-1

AT

J. & J\ e Lower bits of address
‘ Y \ select byte or word
t b within cache line
tag offset

Physical Address
cl ass18. ppt

Fully Associative Cache Simulation

N=16 addresses, B=2 bytes/line, S=1 sets, E=4 entries/set
t=3 s=0 b=1 Address trace (reads):

0 [0000] 1 [0001] 13 [1101] 8 [1000] O [0000]

XXX X

0000 0 (miss) 13 (miss)
0001 v tag data v tag data
0010

0011

0100 (1)
0101

0110

0111

1000 -

1001 8 (miss)
1010 v tag data
1011

1100 (3)
1101

1110

1111
cl ass18. ppt

setg (2)

Write Policy

e What happens when processor writes to the cache?
e Should memory be updated as well?

Write Through:

e Store by processor updates cache and memory.
e Memory always consistent with cache

e Never need to store from cache to memory

e ~2X more loads than stores

Store
> Memory
Processor
>
<+— Cache [
Load
Cache
Load

cl ass18. ppt

Write Strategies (Cont.)

Write Back:

e Store by processor only updates cache line
e Modified line written to memory only when it is evicted
— Requires “dirty bit” for each line

» Set when line in cache is modified
» Indicates that line in memory is stale
e Memory not always consistent with cache

Processor

Store

Write
Back

cl ass18. ppt

Load

Cache

Memory

Cache
Load

Multi-Level Caches

Options: separate data and instruction caches, or a unified cache

size:
speed:
$/Mbyte:
line size:

Processor \

TLB \

regs L1 Dcache Lo Memory —

L1 Icache Cache
200 B 8-64 KB 1-4MB SRAM 128 MB DRAM 9 GB
2 ns 2 ns 6 ns 60 ns 8 ms
$100/MB $1.50/MB $0.05/MB
8B 32 B 32 B 8 KB

larger, slower, cheaper

larger line size, higher associativity, more likely to write back

cl ass18. ppt

Alpha 21164 Hierarchy

L1 Data
1 cycle latency
— 8KB, direct o o
Write-through |€¢—| L2 Unified L3 Unified
Regs. |« pual Ported 8 cycslae6 PI(aBtency 1I(\j/|_—64tM -
32B lines irec ain
3-way assoc. |[€T%| Write-back || Memory
Write-back \Write allocate Up to 2GB
L1 Instruction Write allocate 32B or 64B
8KB, direct |g———— 32B/64B lines lines
32B lines
Processor Chip

e Improving memory performance was a main design goal
e Earlier Alphas CPUs starved for data

cl ass18. ppt

Bandwidth Matching
Challenge

e CPU works with short cycle times
e DRAM (relatively) long cycle times
e How can we provide enough bandwidth between

processor & memory? fhtort CPU
i atency _—~__
Effect pf Caching | | 1T
e Caching greatly reduces amount of traffic to main
memory
= But, sometimes need to move large amounts of /\f
data from memory into cache Qg
Trends Long M
e Need for high bandwidth much greater for Latency
multimedia applications

— Repeated operations on image data

e Recent generation machines (e.g., Pentium 111)
greatly improve on predecessors

cl ass18. ppt

High Bandwidth Memory Systems

CPU CPU
|/\| o

Solution 1 Solution 2
High BW DRAM Wide path between memory & cache

Example: Example: Alpha AXP 21064
Page Mode DRAM 256 bit wide bus, L2 cache,
RAMbus and memory.

cl ass18. ppt

Cache Performance Metrics
Miss Rate

e fraction of memory references not found in cache
(misses/references)

e Typical numbers:

3-10% for L1

can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time

e time to deliver a line in the cache to the processor (includes time

to determine whether the line is in the cache)
e Typical numbers:

1 clock cycle for L1
3-8 clock cycles for L2

Miss Penalty
e additional time required because of a miss
— Typically 25-100 cycles for main memory

cl ass18. ppt

