
15-213 Recitation 7 – 3/5/01

Outline
• Control Flow
• Memory Allocation

– Lab 3 Details

Shaheen Gandhi

e-mail:

sgandhi@andrew.cmu.edu

Office Hours:

Wednesday 1:30 – 2:30

Wean 3108

Reminders
• Lab 3: Conservative Garbage

Collector
• Checkpoint Due 3/13
• Lab Due 3/21

• At least there’s nothing over
Spring Break (I think)

Exceptional Control Flow

• Higher level abstractions for dealing with
miscellaneous conditions:
– Error conditions that require errors to be thrown

up many stack frames (functions)
– Interrupt handling (I/O – Keyboard, Mouse,

Network, etc.)
– Familiarize yourself with wait(2), exec(3),

fork(2), signal(2), etc.

sigsetjmp(3) & siglongjmp(3)
sigsetjmp(3)

• Saves state about:
– Stack Context
– Registers
– Program Counter
– Blocked Signals

siglongjmp(3)
• Starts executing by immediately executing code from

sigsetjmp()
• Man page says: “setjmp() and sigsetjmp make programs

hard to understand and maintain. If possible an alternative
should be used.”

– But we make you do it anyway

Dynamic Memory Allocation

• Applications need variable amounts of
memory (unknown at compile time).

• Use dynamic memory allocation to reserve
chunks of memory at run-time.

• Equivalent to the new operator in Java is
malloc(3) in C

• free(3) un-reserves (‘frees’) malloc’d
memory.
– No equivalent in Java, since Java does nifty

garbage collection

Dynamic Memory Allocation:
How it’s done

First a picture

kernel virtual memory

Memory mapped region for
shared libraries

run-time heap (via malloc)

program text (.text)
initialized data (.data)

uninitialized data (.bss)

stack

0

the “brk” ptr

Dynamic Memory Allocation:
How it’s done

• The malloc package maintains the state of the
run-time heap
– Basically tons of grungy pointer arithmetic
– The “Heap” is just the area between two addresses:

dseg_lo and dseg_hi

• malloc must find a valid contiguous block of
memory in the heap and return this to the
application

• free must return the unused space to the heap
for further allocations

• How the functions do this is entirely up to you
– Generally, fast and inefficient is preferrable to complex,

efficient designs, although both are primary concerns

Conservative Garbage Collection
• Reclaim unused space from the application

– So we can use it to fill future allocations

• How to do it?
– Mark and Sweep

• Find everything you (might) need
• Reclaim the rest

• Where do you find everything you need?
– Start with the “roots”

• Current registers
• Stack
• Heap (yes, the same one malloc manages)

– Then do a depth first search on the data you find

Conservative Garbage Collection:
An Example

typedef struct node
{
struct node *next;

} Node;

void taste(Node *h)
{
Node *n = h;
h = malloc(sizeof(Node));
h->next = n;

}

void srees(Node **h)
{
Node *n = *h;
*h = (*h)->next;
free(*h);

}

Node *head = malloc(sizeof(Node));
head->next = malloc(sizeof(Node));
taste(head);
srees(&head);

What’s wrong?

Lab 3 Tips
• Start Early

– Checkpoint next Wednesday
– You need a working collector by then

• Read the Lab handout
– Now read it again

• Don’t write any code until you know what you want
to do

• Review Pointer Arithmetic

