15-213 Recitation 7 - 3/5/01

Qutline
Control Flow

Memory Allocation
— Lab 3 Detalls

Reminders

Lab 3: Conservative Garbage
Collector

e Checkpoint Due 3/13
e Lab Due 3/21

At least there’s nothing over
Spring Break (I think)

Shaheen Gandhi
e-mail:
sgandhi@andrew.cmu.edu
Office Hours:
Wednesday 1:30 — 2:30
Wean 3108

Exceptional Control Flow

e Higher level abstractions for dealing with
miscellaneous conditions:

Error conditions that require errors to be thrown
up many stack frames (functions)

Interrupt handling (1/0 — Keyboard, Mouse,
Network, etc.)

Familiarize yourself with wart(2), exec(3),
fork(2), signal (2), etc.

sigsetpmp(3) & siglongpmp(3)

sigsetymp(3)
e Saves state about:
— Stack Context
— Registers
— Program Counter
— Blocked Signals
siglongymp(3)
e Starts executing by immediately executing code from

sigsetpmp()

e Man page says: “setjmp() and sigsetjmp make programs
hard to understand and maintain. If possible an alternative
should be used.”

— But we make you do it anyway

Dynamic Memory Allocation

Applications need variable amounts of
memory (unknown at compile time).

Use dynamic memory allocation to reserve
chunks of memory at run-time.

Equivalent to the new operator in Java Is
malloc(3) inC

free(3) un-reserves (‘frees’) malloc'd
memory.

— No equivalent in Java, since Java does nifty
garbage collection

Dynamic Memory Allocation:
How It’s done

First a picture

kernel virtual memory T
stack

v
A

Memory mapped region for
shared libraries

A

run-time heap (via malloc)

the “brk” ptr

uninitialized data (.bss)
initialized data (.data)
program text (.text)

Dynamic Memory Allocation:
How It’s done

e The malloc package maintains the state of the
run-time heap
— Basically tons of grungy pointer arithmetic
— The “Heap” Is just the area between two addresses:

dseg_lo and dseg_hi

« malloc must find a valid contiguous block of
memory in the heap and return this to the
application

e fTree must return the unused space to the heap
for further allocations

e How the functions do this is entirely up to you

— Generally, fast and inefficient is preferrable to complex,
efficient designs, although both are primary concerns

Conservative Garbage Collection

e Reclaim unused space from the application
— So we can use it to fill future allocations

e How to do it?

— Mark and Sweep
e Find everything you (might) need
e Reclaim the rest

e Where do you find everything you need?

— Start with the “roots”
e Current registers
e Stack
e Heap (yes, the same one mal loc manages)

— Then do a depth first search on the data you find

Conservative Garbage Collection:

An Example
typedef struct node Node *head = malloc(sizeof(Node));
{ head->next = malloc(sizeof(Node));
struct node *next; taste(head);
} Node; srees(&head);

void taste(Node *h)

{ What's wrong?
Node *n = h;
h = malloc(sizeof(Node));
h->next = n;

}

voild srees(Node **h)
{
Node *n = *h;
*h = (*h)->next;
free(*h);
+

Lab 3 Tips

Start Early

— Checkpoint next Wednesday
— You need a working collector by then

Read the Lab handout
— Now read it again

Don’t write any code until you know what you want
to do

Review Pointer Arithmetic

