15-213 Recitation 5 - 2/19/01

Outline

- Structured Data:structs / uni ons
- Alignment
- Floating Point

Reminders

- Lab 2: Wednesday, 11:59
- EXAM 1: Tuesday, 2/27
 - UC McConomy

Shaheen Gandhi

e-mail:

sgandhi@andrew.cmu.edu

Office Hours:

Wednesday 12:30 - 2:30

Wean 3108

structs and uni ons

- Organize data
- structs store multiple elements, uni ons store a single element at a time
- Members of a uni on change how you look at data
- uni ons used for mutually exclusive data

Alignment

- Contiguous areas of memory
- Each block is aligned
 - Size is a multiple of a base value
 - "Base value" is the largest alignment of data types in structure
- Why?
 - Efficient load/store from memory
 - Virtual Memory paging
- This applies to any variable type

Structure of a struct

- Find largest alignment
 - Size of structure must be a multiple of this
- For each element e (top to bottom):
 - Find alignment of e
 - Starting offset must be a multiple of this
 - Pad previous element with empty space until alignment matches
 - Allocate alignment worth of space to e
- Pad last element with empty space until alignment of structure matches
- Note this isn't optimal!

Structure of a uni on

- Find largest alignment
 - Size of structure must be a multiple of this
- Allocate this much space

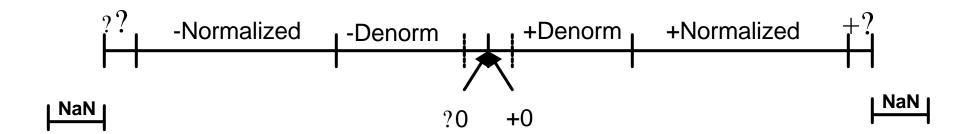
Examples

```
struct one {
  int i;
  double d;
  char c[2];
}
union two {
  int i;
  double d;
  char c[2];
}
```

Floating Point

(Better known as "I'm going to kill the person that thought this up")

- IEEE Floating Point
 - Standard notation
 - Tons of features we won't look at
- Floating Point at a bit level:


- s sign bit (S)
- exp exponent (maps to E, has e bits)
- frac –significand (maps to M, has f bits)
- Numerical Equivalent: $-1^s M 2^E$
- "Normalized" and "Denormalized" encoding

"Normalized" Encoding

- exp ? 0 and exp ? 111...1
 - If exp = 111...1, it's ? or NAN
- $E = \exp B$
 - B is the "Bias"
 - Usually 2^{e-1} − 1, but can be different
 - exp: Unsigned integer value [1, 2e 1]
- $M = 1. \{frac\}$
 - {frac} are the bits of frac
 - frac is a fractional binary number
- Normalized Numbers have range [2^{1-B}, 2^{B+1})
 - And their negatives

"Denormalized" Encoding

- exp = 0
- E = -B+1
- $M = 0. \{frac\}$
- Denormalized Numbers have Range [0, 2^{1-B})
 - And their negatives

Examples

• 8 bit FP, 1 bit sign, 4 bit exponent, 3 bit significand, Bias of 7

Representation -> Number

0 0101 011 0.34375

0 0000 101 0.009765625

1 1011 110 -28.0