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Concurrency II: Synchronization
April 12, 2001

Topics
• Progress graphs
• Semaphores
• Mutex and condition variables
• Barrier synchronization
• Timeout waiting
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“The course that gives CMU its Zip!”
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A version of badcnt .c with
a simple counter loop

int ctr = 0; /* shared */ 

/* main routine creates*/
/* two count threads */

/* count thread */
void *count(void * arg ) {

int i;

for (i=0; i<NITERS; i++)
ctr ++;

return NULL;
}

linux > badcnt
BOOM! ctr =198841183

linux > badcnt
BOOM! ctr =198261801

linux > badcnt
BOOM! ctr =198269672

note: counter should be
equal to 200,000,000

What went wrong?
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Assembly code for counter loop

.L9:
movl - 4(%ebp ),% eax
cmpl $99999999,% eax
jle .L12
jmp .L10

.L12:
movl ctr ,%eax # Load
leal 1(%eax ),% edx # Update
movl %edx , ctr  # Store

.L11:
movl - 4(%ebp ),% eax
leal 1(%eax ),% edx
movl %edx , - 4(%ebp )
jmp .L9

.L10:

Corresponding asm code
(gcc -O0 -fforce -mem) 

for (i=0; i<NITERS; i++)
ctr ++;

C code for counter loop

Head (H i)

Tail (T i)

Load  ctr (L i)
Update ctr (Ui)

Store ctr (Si)
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Concurrent execution
Key thread idea: In general, any sequentially consistent 

interleaving is possible, but some are incorrect!
• Ii denotes that thread i executes instruction I
• %eax i is the contents of % eax in thread i’s context
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Concurrent execution (cont)
Incorrect ordering: two threads increment the counter, 

but the result is 1 instead of 2.
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Oops!
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Concurrent execution (cont)
How about this ordering?
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i (thread) instr i ctr%eax1 %eax2

We can clarify our understanding of concurrent
execution with the help of the progress graph
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Progress graphs
A progress graph depicts
the discrete execution 
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst 1, Inst 2).

E.g., (L 1, S2)  denotes state
where  thread 1 has
completed L 1 and thread
2 has completed S 2.H1 L1 U1 S1 T1
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CS 213 S’01– 8 –class23. ppt

Legal state transitions

Interleaved concurrent execution (one processor):

or

Parallel concurrent execution (multiple processors)

or or

Key point: Always reason about concurrent threads as 
if each thread had its own CPU. 

(parallel execution)
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Trajectories

A trajectory is a sequence 
of legal state transitions 
that describes one possible 
concurrent execution of
the threads.

Example:

H1, L2, U1, H2, L2, 
S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(O,O)
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Critical sections and unsafe regions

L, U, and S form a 
critical section with
respect to the shared
variable ctr .

Instructions in critical
sections ( wrt to some
shared variable) should 
not be interleaved.

Sets of states where such
interleaving occurs
form unsafe regions .

critical section wrt shared variable ctr

critical 
section

wrt
shared

variable
ctr

Unsafe region
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Safe trajectories

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(O,O)

critical section

critical 
section

Def: A safe trajectory 
is a sequence of legal 
transitions that does not
touch any states in an
unsafe region.

Claim: 
Any safe trajectory 
results in a correct value 
for the shared 
variable ctr.

Unsafe region
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Unsafe trajectories

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(O,O)

critical section

critical 
section

Unsafe region

Touching a state of type x
is always incorrect.

Touching a state of type y
may or may not be OK:

x x

x x

y

y

yy y correct because
store completes
before load.

incorrect because
order of load and
store are
indeterminate.

Moral:  be conservative
and disallow all 
unsafe trajectories.
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Semaphore operations
Question: How can we guarantee a safe trajectory?

• We must synchronize the threads so that they never enter an unsafe 
state.

Classic solution : Dijkstra's P and V operations on 
semaphores.

• semaphore: non -negative integer synchronization variable.
• P(s): [ while (s == 0) wait(); s -- ; ]

– Dutch for "Proberen" (test)
• V(s): [ s++; ]

– Dutch for "Verhogen" (increment)

• OS guarantees that operations between brackets [ ] are executed 
indivisibly.
– Only one P or V operation at a time can modify s.
– When while loop in P terminates, only that P can decrement s.

• Semaphore invariant: (s >= 0)
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s = 0

s = 1

s = 1s = 0

Sharing with semaphores

H1 P(s) ctr ++; V(s) T1

H2

P(s)

ctr ++;

V(s)

T2

Thread 1

Thread 2

(O,O)

s = -1
(forbidden

region)
s = 0

s = 0 s = 1

Initially, s = 1

s = 1

Provide mutually 
exclusive access to 
shared variable by 
surrounding critical 
section with  P and V 
operations on semaphore
s (initially set to 1).

Semaphore invariant 
creates a forbidden region
that encloses unsafe 
region and is never 
touched by any trajectory.

Semaphore used in this
way is often called a 
mutex (mutual exclusion).
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Posix semaphores
/* initialize semaphore sem to value */
/* pshared =0 if thread, pshared =1 if process */
void Sem_init( sem_t * sem, int pshared , unsigned int value) {

if ( sem_init( sem, pshared , value) < 0)
unix _error(" Sem_init");

}

/* P operation on semaphore sem */
void P( sem_t * sem) {

if ( sem_wait( sem))
unix _error("P");

}

/* V operation on semaphore sem */
void V( sem_t * sem) {

if ( sem_post( sem))
unix _error("V");

}
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Sharing with Posix semaphores
/* goodcnt .c - properly synch'd */
/* version of badcnt .c */
#include < ics .h>
#define NITERS 10000000

void *count(void * arg );

struct {
int ctr ;     /* shared ctr */
sem_t mutex ; /* semaphore */

} shared;

int main() {
pthread _t tid1, tid2;

/* init mutex semaphore to 1 */
Sem_init(&shared. mutex , 0, 1); 

/* create 2 ctr threads and wait */
...

}

/* counter thread */
void *count(void * arg ) {

int i;

for (i=0; i<NITERS; i++) {
P(&shared. mutex );
shared. ctr ++;
V(&shared. mutex );

}
return NULL;

}
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Progress graph for goodcnt .c

P(m) Thread 1

Initially, mutex = 1

P(m)

Thread 2

V(m) P(m) V(m) P(m) V(m)

V(m)

P(m)

V(m)

P(m)

V(m)

f.r.

f.r.

f.r.
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deadlock
region

Deadlock

P(s) V(s)

V(t)

Thread 1

Thread 2

Initially, s=t=1

P(t)

P(t) V(t)

forbidden
region for s

forbidden
region for t

P(s)

V(s) deadlock
state

Semaphores introduce the
potential for deadlock: 
waiting for a condition 
that
will never be true.

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state , waiting for 
either s or t to become 
nonzero.

Other trajectories luck out 
and skirt the deadlock 
region.

Unfortunate fact: deadlock 
is often non -deterministic.
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A deterministic deadlock

P(s) P(t)

P(t)

Thread 1

Thread 2

f.r.
for s

Initially, s = 1, t = 0.

P(s)

f.r.
for t

V(s) V(t)

V(s)

V(t)

deadlock
state

Sometimes though,
we get "lucky" and the 
deadlock is deterministic.

Here is an example of a 
deterministic deadlock 
caused by improperly
initializing semaphore t.

Problem: correct this 
program and draw the
resulting forbidden
regions.

...

f.r. 
for t ...

deadlock region
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Signaling with semaphores

Common synchronization pattern:
• Producer waits for slot, inserts item in buffer, and signals con sumer.
• Consumer waits for item, removes it from buffer, and signals pro ducer.

Examples
• Multimedia processing:

– producer creates MPEG video frames, consumer renders the frames 

• Graphical user interfaces
– producer detects mouse clicks, mouse movements, and keyboard hits and 

inserts corresponding events in buffer.
– consumer retrieves events from buffer and paints the display.

producer
thread

shared
buffer

consumer
thread
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Producer -consumer (1 -buffer)

/* buf1.c - producer - consumer
on 1 - element buffer */
#include < ics .h>

#define NITERS 5

void *producer(void * arg );
void *consumer(void * arg );

struct {
int buf ; /* shared var */
sem_t full; /* sems */
sem_t empty;

} shared;

int main() {
pthread _t tid _producer;
pthread _t tid _consumer;

/* initialize the semaphores */
Sem_init(&shared.empty, 0, 1); 
Sem_init(&shared.full,  0, 0);

/* create threads and wait */
Pthread _create(& tid _producer, NULL, 

producer, NULL);
Pthread _create(& tid _consumer, NULL, 

consumer, NULL);
Pthread _join( tid _producer, NULL);
Pthread _join( tid _consumer, NULL);

exit(0);
}
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Producer -consumer (cont)

/* producer thread */
void *producer(void * arg ) {

int i, item;

for (i=0; i<NITERS; i++) {
/* produce item */
item = i;
printf ("produced %d \ n", 

item);

/* write item to buf */
P(&shared.empty);
shared. buf = item;
V(&shared.full);

}
return NULL;

}

/* consumer thread */
void *consumer(void * arg ) {

int i, item;

for (i=0; i<NITERS; i++) {
/* read item from buf */
P(&shared.full);
item = shared. buf ;
V(&shared.empty);

/* consume item */
printf ("consumed %d \ n", 

item);
}
return NULL;

}

Initially:  empty = 1, full = 0.
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Producer -consumer progress graph

P(e)

ProducerInitially, empty = 1, full = 0.

P(f)

Consumer

V(f) P(e) V(f) P(e) V(f)

V(e)

P(f)

V(e)

P(f)

V(e) The forbidden regions
prevent the producer 
from writing into a
full buffer.

They also prevent the
consumer from reading an 
empty buffer.

Problem: Write version
for n -element buffer with
multiple producers and
consumers.
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Limitations of semaphores
Semaphores are sound and fundamental, but they have 

limitations.
• Difficult to broadcast a signal to a group of threads.

– e.g., barrier synchronization: no thread returns from the barrier function 
until every other thread has called the barrier function.

• Impossible to do timeout waiting.
– e.g., wait for at most 1 second for a condition to become true.

For these we must use Pthreads mutex and condition 
variables.
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Basic operations on mutex variables

Initializes a mutex variable ( mutex ) with some attributes ( attr ).

• attributes are usually NULL.
• like initializing a mutex semaphore to 1.

int pthread _mutex _init( pthread _mutex _t * mutex ,  
pthread _mutexattr _t * attr )

Indivisibly waits for mutex to be unlocked and then locks it.
• like P( mutex )

int pthread _mutex _lock( pthread _mutex _t * mutex )

Unlocks mutex .

• like V( mutex )

int pthread _mutex _unlock( pthread _mutex _t * mutex )

CS 213 S’01– 26 –class23. ppt

Basic operations on condition variables

Initializes a condition variable ( cond ) with some attributes ( attr ).

• attributes are usually NULL.

int pthread _cond _init( pthread _cond _t * cond ,  
pthread _condattr _t * attr )

Awakens one thread waiting on condition cond .

• if no threads waiting on condition, then it does nothing.
• key point: signals are not queued!

int pthread _cond _signal( pthread _cond _t * cond )

Indivisibly unlocks mutex and waits for signal on condition cond

• When awakened, indivisibly locks mutex .

int pthread _cond _wait( pthread _cond _t * cond , pthread _mutex _t * mutex )
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Advanced operations on 
condition variables

Awakens all threads waiting on condition cond .

• if no threads waiting on condition, then it does nothing.

int pthread _cond _broadcast( pthread _cond _t * cond )

int pthread _cond _timedwait ( pthread _cond _t * cond , 
pthread _mutex _t * mutex ,
struct timespec * abstime )

Waits for condition cond until absolute wall clock time is abstime

• Unlocks mutex on entry, locks mutex on awakening.

• Use of absolute time rather than relative time is strange.
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Signaling and waiting on conditions

Pthread _mutex _lock(& mutex );
Pthread _cond _signal(& cond );
Pthread _mutex _unlock(& mutex );

Basic pattern for signaling

Pthread _mutex _lock(& mutex );
Pthread _cond _wait(& cond , & mutex );
Pthread _mutex _unlock(& mutex );

Basic pattern for waiting

A mutex is always associated 
with a condition variable.

Guarantees that the condition
cannot be signaled (and thus
ignored) in the interval when 
the waiter locks the mutex
and waits on the condition.
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Barrier 
synchronization

#include < ics .h>

static pthread _mutex _t mutex ;
static pthread _cond _t cond ;
static int nthreads ;
static int barriercnt = 0;

void barrier_init( int n) {
nthreads = n;
Pthread _mutex _init(& mutex , NULL);
Pthread _cond _init(& cond , NULL);

}

void barrier() {
Pthread _mutex _lock(& mutex );
if (++ barriercnt == nthreads ) {

barriercnt = 0;
Pthread _cond _broadcast(& cond );

}
else 

Pthread _cond _wait(& cond , & mutex );
Pthread _mutex _unlock(& mutex );

}

Call to barrier will not 
return until every other 
thread has also called 
barrier .

Needed  for tightly -
coupled parallel 
applications that proceed 
in phases. E.g., physical
simulations.
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timebomb .c: timeout waiting example
A program that explodes unless the user hits a key 

within 5 seconds. 

#include < ics .h>
#define TIMEOUT 5

/* function prototypes */
void *thread(void * vargp );
struct timespec * maketimeout ( int secs );

/* condition variable and 
its associated mutex */
pthread _cond _t cond ;
pthread _mutex _t mutex ;

/* thread id */
pthread _t tid ;
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timebomb .c (cont)
A routine for building a timeout structure for 

pthread _cond _timewait .

/* 
* maketimeout - builds a timeout object that times out
*               in secs seconds 
*/

struct timespec * maketimeout ( int secs ) {
struct timeval now;
struct timespec * tp = 

( struct timespec *) malloc ( sizeof ( struct timespec ));

gettimeofday (&now, NULL);
tp - >tv _sec = now. tv _sec + secs ;
tp - >tv _nsec = now. tv _usec * 1000;
return tp ;

}
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Main routine for timebomb .c
int main() {

int i, rc ;

/* initialize the mutex and condition variable */
Pthread _cond _init(& cond , NULL);
Pthread _mutex _init(& mutex , NULL);

/* start getchar thread and wait for it to timeout */
Pthread _mutex _lock(& mutex );
Pthread _create(& tid , NULL, thread, NULL);
for (i=0; i<TIMEOUT; i++) {

printf ("BEEP \ n");
rc = pthread _cond _timedwait (& cond , & mutex , maketimeout (1));
if ( rc != ETIMEDOUT) {

printf ("WHEW!\ n");
exit(0);

}
}
printf ("BOOM! \ n");
exit(0);

}
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Thread routine for timebomb .c

/* 
* thread - executes getchar in a separate thread
*/

void *thread(void * vargp ) {

(void) getchar ();

Pthread _mutex _lock(& mutex );
Pthread _cond _signal(& cond );
Pthread _mutex _unlock(& mutex );
return NULL;

}
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Threads summary
Threads provide another mechanism for writing 

concurrent programs.

Threads are growing in popularity
• Somewhat cheaper than processes.
• Easy to share data between threads.

However, the ease of sharing has a cost:
• Easy to introduce subtle synchronization errors.

For more info:
• man pages  ( man - k pthread s)

• D. Butenhof , “Programming with Posix Threads”, Addison -Wesley, 
1997.


