
Page 1

Concurrency II: Synchronization
April 12, 2001

Topics
• Progress graphs
• Semaphores
• Mutex and condition variables
• Barrier synchronization
• Timeout waiting

class23. ppt

15-213
“The course that gives CMU its Zip!”

CS 213 S’01– 2 –class23. ppt

A version of badcnt .c with
a simple counter loop

int ctr = 0; /* shared */

/* main routine creates*/
/* two count threads */

/* count thread */
void *count(void * arg) {

int i;

for (i=0; i<NITERS; i++)
ctr ++;

return NULL;
}

linux > badcnt
BOOM! ctr =198841183

linux > badcnt
BOOM! ctr =198261801

linux > badcnt
BOOM! ctr =198269672

note: counter should be
equal to 200,000,000

What went wrong?

CS 213 S’01– 3 –class23. ppt

Assembly code for counter loop

.L9:
movl - 4(%ebp),% eax
cmpl $99999999,% eax
jle .L12
jmp .L10

.L12:
movl ctr ,%eax # Load
leal 1(%eax),% edx # Update
movl %edx , ctr # Store

.L11:
movl - 4(%ebp),% eax
leal 1(%eax),% edx
movl %edx , - 4(%ebp)
jmp .L9

.L10:

Corresponding asm code
(gcc -O0 -fforce -mem)

for (i=0; i<NITERS; i++)
ctr ++;

C code for counter loop

Head (H i)

Tail (T i)

Load ctr (L i)
Update ctr (Ui)

Store ctr (Si)

CS 213 S’01– 4 –class23. ppt

Concurrent execution
Key thread idea: In general, any sequentially consistent

interleaving is possible, but some are incorrect!
• Ii denotes that thread i executes instruction I
• %eax i is the contents of % eax in thread i’s context

H1

L1

U1

S1

H2

L2

U2

S2

T2

T1

1
1
1
1
2
2
2
2
2
1

-
0
1
1
-
-
-
-
-
1

0
0
0
1
1
1
1
2
2
2

i (thread) instr i ctr%eax1

OK

-
-
-
-
-
1
2
2
2
-

%eax2

Page 2

CS 213 S’01– 5 –class23. ppt

Concurrent execution (cont)
Incorrect ordering: two threads increment the counter,

but the result is 1 instead of 2.

H1

L1

U1

H2

L2

S1

T1

U2

S2

T2

1
1
1
2
2
1
1
2
2
2

-
0
1
-
-
1
1
-
-
-

0
0
0
0
0
1
1
1
1
1

i (thread) instr i ctr%eax1

-
-
-
-
0
-
-
1
1
1

%eax2

Oops!

CS 213 S’01– 6 –class23. ppt

Concurrent execution (cont)
How about this ordering?

H1

L1

H2

L2

U2

S2

U1

S1

T1

T2

1
1
2
2
2
2
1
1
1
2

i (thread) instr i ctr%eax1 %eax2

We can clarify our understanding of concurrent
execution with the help of the progress graph

CS 213 S’01– 7 –class23. ppt

Progress graphs
A progress graph depicts
the discrete execution
state space of concurrent
threads.

Each axis corresponds to
the sequential order of
instructions in a thread.

Each point corresponds to
a possible execution state
(Inst 1, Inst 2).

E.g., (L 1, S2) denotes state
where thread 1 has
completed L 1 and thread
2 has completed S 2.H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(L1, S2)

(O,O)

CS 213 S’01– 8 –class23. ppt

Legal state transitions

Interleaved concurrent execution (one processor):

or

Parallel concurrent execution (multiple processors)

or or

Key point: Always reason about concurrent threads as
if each thread had its own CPU.

(parallel execution)

Page 3

CS 213 S’01– 9 –class23. ppt

Trajectories

A trajectory is a sequence
of legal state transitions
that describes one possible
concurrent execution of
the threads.

Example:

H1, L2, U1, H2, L2,
S1, T1, U2, S2, T2

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(O,O)

CS 213 S’01– 10 –class23. ppt

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(O,O)

Critical sections and unsafe regions

L, U, and S form a
critical section with
respect to the shared
variable ctr .

Instructions in critical
sections (wrt to some
shared variable) should
not be interleaved.

Sets of states where such
interleaving occurs
form unsafe regions .

critical section wrt shared variable ctr

critical
section

wrt
shared

variable
ctr

Unsafe region

CS 213 S’01– 11 –class23. ppt

Safe trajectories

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(O,O)

critical section

critical
section

Def: A safe trajectory
is a sequence of legal
transitions that does not
touch any states in an
unsafe region.

Claim:
Any safe trajectory
results in a correct value
for the shared
variable ctr.

Unsafe region

CS 213 S’01– 12 –class23. ppt

Unsafe trajectories

H1 L1 U1 S1 T1

H2

L2

U2

S2

T2

Thread 1

Thread 2

(O,O)

critical section

critical
section

Unsafe region

Touching a state of type x
is always incorrect.

Touching a state of type y
may or may not be OK:

x x

x x

y

y

yy y correct because
store completes
before load.

incorrect because
order of load and
store are
indeterminate.

Moral: be conservative
and disallow all
unsafe trajectories.

Page 4

CS 213 S’01– 13 –class23. ppt

Semaphore operations
Question: How can we guarantee a safe trajectory?

• We must synchronize the threads so that they never enter an unsafe
state.

Classic solution : Dijkstra's P and V operations on
semaphores.

• semaphore: non -negative integer synchronization variable.
• P(s): [while (s == 0) wait(); s -- ;]

– Dutch for "Proberen" (test)
• V(s): [s++;]

– Dutch for "Verhogen" (increment)

• OS guarantees that operations between brackets [] are executed
indivisibly.
– Only one P or V operation at a time can modify s.
– When while loop in P terminates, only that P can decrement s.

• Semaphore invariant: (s >= 0)

CS 213 S’01– 14 –class23. ppt

s = 0

s = 1

s = 1s = 0

Sharing with semaphores

H1 P(s) ctr ++; V(s) T1

H2

P(s)

ctr ++;

V(s)

T2

Thread 1

Thread 2

(O,O)

s = -1
(forbidden

region)
s = 0

s = 0 s = 1

Initially, s = 1

s = 1

Provide mutually
exclusive access to
shared variable by
surrounding critical
section with P and V
operations on semaphore
s (initially set to 1).

Semaphore invariant
creates a forbidden region
that encloses unsafe
region and is never
touched by any trajectory.

Semaphore used in this
way is often called a
mutex (mutual exclusion).

CS 213 S’01– 15 –class23. ppt

Posix semaphores
/* initialize semaphore sem to value */
/* pshared =0 if thread, pshared =1 if process */
void Sem_init(sem_t * sem, int pshared , unsigned int value) {

if (sem_init(sem, pshared , value) < 0)
unix _error(" Sem_init");

}

/* P operation on semaphore sem */
void P(sem_t * sem) {

if (sem_wait(sem))
unix _error("P");

}

/* V operation on semaphore sem */
void V(sem_t * sem) {

if (sem_post(sem))
unix _error("V");

}

CS 213 S’01– 16 –class23. ppt

Sharing with Posix semaphores
/* goodcnt .c - properly synch'd */
/* version of badcnt .c */
#include < ics .h>
#define NITERS 10000000

void *count(void * arg);

struct {
int ctr ; /* shared ctr */
sem_t mutex ; /* semaphore */

} shared;

int main() {
pthread _t tid1, tid2;

/* init mutex semaphore to 1 */
Sem_init(&shared. mutex , 0, 1);

/* create 2 ctr threads and wait */
...

}

/* counter thread */
void *count(void * arg) {

int i;

for (i=0; i<NITERS; i++) {
P(&shared. mutex);
shared. ctr ++;
V(&shared. mutex);

}
return NULL;

}

Page 5

CS 213 S’01– 17 –class23. ppt

Progress graph for goodcnt .c

P(m) Thread 1

Initially, mutex = 1

P(m)

Thread 2

V(m) P(m) V(m) P(m) V(m)

V(m)

P(m)

V(m)

P(m)

V(m)

f.r.

f.r.

f.r.

CS 213 S’01– 18 –class23. ppt

deadlock
region

Deadlock

P(s) V(s)

V(t)

Thread 1

Thread 2

Initially, s=t=1

P(t)

P(t) V(t)

forbidden
region for s

forbidden
region for t

P(s)

V(s) deadlock
state

Semaphores introduce the
potential for deadlock:
waiting for a condition
that
will never be true.

Any trajectory that enters
the deadlock region will
eventually reach the
deadlock state , waiting for
either s or t to become
nonzero.

Other trajectories luck out
and skirt the deadlock
region.

Unfortunate fact: deadlock
is often non -deterministic.

CS 213 S’01– 19 –class23. ppt

A deterministic deadlock

P(s) P(t)

P(t)

Thread 1

Thread 2

f.r.
for s

Initially, s = 1, t = 0.

P(s)

f.r.
for t

V(s) V(t)

V(s)

V(t)

deadlock
state

Sometimes though,
we get "lucky" and the
deadlock is deterministic.

Here is an example of a
deterministic deadlock
caused by improperly
initializing semaphore t.

Problem: correct this
program and draw the
resulting forbidden
regions.

...

f.r.
for t ...

deadlock region

CS 213 S’01– 20 –class23. ppt

Signaling with semaphores

Common synchronization pattern:
• Producer waits for slot, inserts item in buffer, and signals con sumer.
• Consumer waits for item, removes it from buffer, and signals pro ducer.

Examples
• Multimedia processing:

– producer creates MPEG video frames, consumer renders the frames

• Graphical user interfaces
– producer detects mouse clicks, mouse movements, and keyboard hits and

inserts corresponding events in buffer.
– consumer retrieves events from buffer and paints the display.

producer
thread

shared
buffer

consumer
thread

Page 6

CS 213 S’01– 21 –class23. ppt

Producer -consumer (1 -buffer)

/* buf1.c - producer - consumer
on 1 - element buffer */
#include < ics .h>

#define NITERS 5

void *producer(void * arg);
void *consumer(void * arg);

struct {
int buf ; /* shared var */
sem_t full; /* sems */
sem_t empty;

} shared;

int main() {
pthread _t tid _producer;
pthread _t tid _consumer;

/* initialize the semaphores */
Sem_init(&shared.empty, 0, 1);
Sem_init(&shared.full, 0, 0);

/* create threads and wait */
Pthread _create(& tid _producer, NULL,

producer, NULL);
Pthread _create(& tid _consumer, NULL,

consumer, NULL);
Pthread _join(tid _producer, NULL);
Pthread _join(tid _consumer, NULL);

exit(0);
}

CS 213 S’01– 22 –class23. ppt

Producer -consumer (cont)

/* producer thread */
void *producer(void * arg) {

int i, item;

for (i=0; i<NITERS; i++) {
/* produce item */
item = i;
printf ("produced %d \ n",

item);

/* write item to buf */
P(&shared.empty);
shared. buf = item;
V(&shared.full);

}
return NULL;

}

/* consumer thread */
void *consumer(void * arg) {

int i, item;

for (i=0; i<NITERS; i++) {
/* read item from buf */
P(&shared.full);
item = shared. buf ;
V(&shared.empty);

/* consume item */
printf ("consumed %d \ n",

item);
}
return NULL;

}

Initially: empty = 1, full = 0.

CS 213 S’01– 23 –class23. ppt

Producer -consumer progress graph

P(e)

ProducerInitially, empty = 1, full = 0.

P(f)

Consumer

V(f) P(e) V(f) P(e) V(f)

V(e)

P(f)

V(e)

P(f)

V(e) The forbidden regions
prevent the producer
from writing into a
full buffer.

They also prevent the
consumer from reading an
empty buffer.

Problem: Write version
for n -element buffer with
multiple producers and
consumers.

CS 213 S’01– 24 –class23. ppt

Limitations of semaphores
Semaphores are sound and fundamental, but they have

limitations.
• Difficult to broadcast a signal to a group of threads.

– e.g., barrier synchronization: no thread returns from the barrier function
until every other thread has called the barrier function.

• Impossible to do timeout waiting.
– e.g., wait for at most 1 second for a condition to become true.

For these we must use Pthreads mutex and condition
variables.

Page 7

CS 213 S’01– 25 –class23. ppt

Basic operations on mutex variables

Initializes a mutex variable (mutex) with some attributes (attr).

• attributes are usually NULL.
• like initializing a mutex semaphore to 1.

int pthread _mutex _init(pthread _mutex _t * mutex ,
pthread _mutexattr _t * attr)

Indivisibly waits for mutex to be unlocked and then locks it.
• like P(mutex)

int pthread _mutex _lock(pthread _mutex _t * mutex)

Unlocks mutex .

• like V(mutex)

int pthread _mutex _unlock(pthread _mutex _t * mutex)

CS 213 S’01– 26 –class23. ppt

Basic operations on condition variables

Initializes a condition variable (cond) with some attributes (attr).

• attributes are usually NULL.

int pthread _cond _init(pthread _cond _t * cond ,
pthread _condattr _t * attr)

Awakens one thread waiting on condition cond .

• if no threads waiting on condition, then it does nothing.
• key point: signals are not queued!

int pthread _cond _signal(pthread _cond _t * cond)

Indivisibly unlocks mutex and waits for signal on condition cond

• When awakened, indivisibly locks mutex .

int pthread _cond _wait(pthread _cond _t * cond , pthread _mutex _t * mutex)

CS 213 S’01– 27 –class23. ppt

Advanced operations on
condition variables

Awakens all threads waiting on condition cond .

• if no threads waiting on condition, then it does nothing.

int pthread _cond _broadcast(pthread _cond _t * cond)

int pthread _cond _timedwait (pthread _cond _t * cond ,
pthread _mutex _t * mutex ,
struct timespec * abstime)

Waits for condition cond until absolute wall clock time is abstime

• Unlocks mutex on entry, locks mutex on awakening.

• Use of absolute time rather than relative time is strange.

CS 213 S’01– 28 –class23. ppt

Signaling and waiting on conditions

Pthread _mutex _lock(& mutex);
Pthread _cond _signal(& cond);
Pthread _mutex _unlock(& mutex);

Basic pattern for signaling

Pthread _mutex _lock(& mutex);
Pthread _cond _wait(& cond , & mutex);
Pthread _mutex _unlock(& mutex);

Basic pattern for waiting

A mutex is always associated
with a condition variable.

Guarantees that the condition
cannot be signaled (and thus
ignored) in the interval when
the waiter locks the mutex
and waits on the condition.

Page 8

CS 213 S’01– 29 –class23. ppt

Barrier
synchronization

#include < ics .h>

static pthread _mutex _t mutex ;
static pthread _cond _t cond ;
static int nthreads ;
static int barriercnt = 0;

void barrier_init(int n) {
nthreads = n;
Pthread _mutex _init(& mutex , NULL);
Pthread _cond _init(& cond , NULL);

}

void barrier() {
Pthread _mutex _lock(& mutex);
if (++ barriercnt == nthreads) {

barriercnt = 0;
Pthread _cond _broadcast(& cond);

}
else

Pthread _cond _wait(& cond , & mutex);
Pthread _mutex _unlock(& mutex);

}

Call to barrier will not
return until every other
thread has also called
barrier .

Needed for tightly -
coupled parallel
applications that proceed
in phases. E.g., physical
simulations.

CS 213 S’01– 30 –class23. ppt

timebomb .c: timeout waiting example
A program that explodes unless the user hits a key

within 5 seconds.

#include < ics .h>
#define TIMEOUT 5

/* function prototypes */
void *thread(void * vargp);
struct timespec * maketimeout (int secs);

/* condition variable and
its associated mutex */
pthread _cond _t cond ;
pthread _mutex _t mutex ;

/* thread id */
pthread _t tid ;

CS 213 S’01– 31 –class23. ppt

timebomb .c (cont)
A routine for building a timeout structure for

pthread _cond _timewait .

/*
* maketimeout - builds a timeout object that times out
* in secs seconds
*/

struct timespec * maketimeout (int secs) {
struct timeval now;
struct timespec * tp =

(struct timespec *) malloc (sizeof (struct timespec));

gettimeofday (&now, NULL);
tp - >tv _sec = now. tv _sec + secs ;
tp - >tv _nsec = now. tv _usec * 1000;
return tp ;

}

CS 213 S’01– 32 –class23. ppt

Main routine for timebomb .c
int main() {

int i, rc ;

/* initialize the mutex and condition variable */
Pthread _cond _init(& cond , NULL);
Pthread _mutex _init(& mutex , NULL);

/* start getchar thread and wait for it to timeout */
Pthread _mutex _lock(& mutex);
Pthread _create(& tid , NULL, thread, NULL);
for (i=0; i<TIMEOUT; i++) {

printf ("BEEP \ n");
rc = pthread _cond _timedwait (& cond , & mutex , maketimeout (1));
if (rc != ETIMEDOUT) {

printf ("WHEW!\ n");
exit(0);

}
}
printf ("BOOM! \ n");
exit(0);

}

Page 9

CS 213 S’01– 33 –class23. ppt

Thread routine for timebomb .c

/*
* thread - executes getchar in a separate thread
*/

void *thread(void * vargp) {

(void) getchar ();

Pthread _mutex _lock(& mutex);
Pthread _cond _signal(& cond);
Pthread _mutex _unlock(& mutex);
return NULL;

}

CS 213 S’01– 34 –class23. ppt

Threads summary
Threads provide another mechanism for writing

concurrent programs.

Threads are growing in popularity
• Somewhat cheaper than processes.
• Easy to share data between threads.

However, the ease of sharing has a cost:
• Easy to introduce subtle synchronization errors.

For more info:
• man pages (man - k pthread s)

• D. Butenhof , “Programming with Posix Threads”, Addison -Wesley,
1997.

