15-213

VirtualMemory April3,2001

Topics

- MotivationsforVM
- Addresstranslation
- Acceleratingtranslationwith TLBs

MotivationsforVirtualMemory

- UsePhysicalDRAMasaCachefortheDisk
 - Addressspaceofaprocesscanexceedphysicalmemorysize
 - Sumofaddressspacesofmultipleprocessescanexceedphysical memory
- SimplifyMemoryManagement
 - Multipleprocessesresidentinmainmemory.
 - Eachprocesswithitsownaddressspace
 - Only "active" code and data is a ctually in memory
 - Allocatemorememorytoprocessasneeded.

ProvideProtection

- Oneprocesscan'tinterferewithanother.
 - becausetheyoperateindifferentaddressspaces.
- Userprocesscannotaccessprivilegedinformation
 - different sections of address spaces have different permissions.

Motivation#1:DRAMa"Cache"forDisk

Fulladdressspaceisquitelarge:

- 32-bitaddresses:~4,000,000,000(4billion) bytes
- 64-bitaddresses:~16,000,000,000,000,000,000(16quintillion)byte

Diskstorageis~170XcheaperthanDRAMstorage

- 20GBofDRAM:~\$20,000
- 20GBofdisk:~\$120

Toaccesslargeamountsofdatainacost -effective manner,thebulkofthedatamustbestoredondisk

class20.ppt

-3-

CS213S'01

S

LevelsinMemoryHierarchy

	Register	Cacne	wemory	Diskillemory
size:	32B	32KB -4MB	128MB	20GB
speed:	1ns	2ns	50ns	8ms
\$/Mbyte:		\$100/MB	\$1.00/MB	\$0.006/MB
linesize:	8B	32B	4KB	

larger,slower,cheaper

DRAMvs.SRAMasa"Cache"

DRAMvs.diskismoreextremethanSRAMvs.DRAM

- Accesslatencies:
 - -DRAM~10XslowerthanSRAM
 - Disk~ 100,000X slowerthanDRAM
- Importanceofexploitingspatiallocality:
 - Firstbyteis~ 100,000X slowerthansuccessivebytesondisk» vs.~4Ximprovementforpage -modevs.regularaccessestoDRAM
- Bottomline:
 - DesigndecisionsmadeforDRAMcachesdrivenbyenormouscostof misses

ImpactofThesePropertiesonDesign

If DRAMwastobeorganized similar to an SRAM cache, how would we set the following design parameters?

• Linesize?

_

Associativity?

_

• Writethroughorwriteback?

_

Whatshouldtheimpactofthesechoicesbeon:

missrate

_

hittime

_

misslatency

_

tagstorageoverhead

_

LocatinganObjectina"Cache"

SRAMCache

- Tagstoredwithcacheline
- Mapsfromcacheblocktomemoryblocks
 - Fromcachedto uncached form
- Notagforblocknotincache
- Hardwareretrievesinformation
 - canquicklymatchagainstmultipletags

"Cache"

LocatinganObjectina "Cache" (cont.)

DRAMCache

- Eachallocatepageofvirtualmemoryhasentryinpagetable
- Mappingfromvirtualpagestophysicalpages
 - From uncached formtocachedform
- Pagetableentryevenifpagenotinmemory
 - Specifiesdiskaddress
- OSretrievesinformation

ASystemwithPhysicalMemoryOnly

Examples:

• mostCraymachines,earlyPCs,nearlyallembeddedsystems,etc.

AddressesgeneratedbytheCPUpointdirectlytobytesinphysic

almemory

ASystemwithVirtualMemory

Examples:

<u>AddressTranslation:</u> Hardwareconverts *virtualaddresses* to *physicaladdresses* viaanOS -managedlookuptable(*pagetable*)

PageFaults(Similarto"CacheMisses")

Whatifanobjectisondiskratherthaninmemory?

- Pagetableentryindicatesvirtualaddressnotinmemory
- OSexceptionhandlerinvokedtomovedatafromdiskintomemory
 - -currentprocesssuspends,otherscanresume
 - -OShasfullcontroloverplacement,etc.

ServicingaPageFault

ProcessorSignals Controller

 ReadblockoflengthP startingatdiskaddress Xandstorestartingat memoryaddressY

ReadOccurs

- DirectMemoryAccess (DMA)
- UndercontrolofI/O controller

I/OController SignalsCompletion

- Interruptprocessor
- OSresumessuspended process

Motivation#2:MemoryManagement

Multipleprocessescanresideinphysicalmemory. Howdoweresolveaddressconflicts?

whatiftwoprocessesaccesssomethingatthesameaddress?

Solution: Separate Virtual Addr. Spaces

- Virtualandphysicaladdressspacesdividedintoequal -sizedblocks
 - blocksarecalled"pages"(bothvirtualandphysical)
- Eachprocesshasitsownvirtualaddressspace
 - operatingsystemcontrolshowvirtualpagesasassignedtophysi cal memory

Contrast:MacintoshMemoryModel

MACOS1 -9

Doesnotusetraditionalvirtualmemory

Allprogramobjectsaccessedthrough "handles"

- Indirectreferencethroughpointertable
- Objectsstoredinsharedglobaladdressspace

MacintoshMemoryManagement

Allocation/ Deallocation

• Similartofree -listmanagementof malloc/free

Compaction

Canmoveanyobjectandjustupdatethe(unique)pointerinpoin ter table

Macvs.VM -BasedMemoryMgmt

Allocating, deallocating, and moving memory:

canbeaccomplishedbybothtechniques

Blocksizes:

- Mac:variable -sized
 - maybeverysmallorverylarge
- VM:fixed -size
 - -sizeisequalto onepage (4KBonx86Linuxsystems)

Allocatingcontiguouschunksofmemory:

- Mac:contiguousallocationis required
- VM:canmapcontiguousrangeofvirtualaddressestodisjoint rangesofphysicaladdresses

Protection

• Mac: "wildwrite" by one process can corrupt another's data

MACOSX

"Modern" Operating System

- Virtualmemorywithprotection
- Preemptivemultitasking
 - OtherversionsofMACOSrequireprocessestovoluntarilyrelinq control

uish

BasedonMACHOS

• DevelopedatCMUinlate1980's

Motivation#3:Protection

Protectiongoals:

- Cannotread/writememoryfromanotherprocess
- Cannotwriteintosharedlibraries

Processescanonlyseevirtualaddresses

- Cannotgettophysicaladdressesdirectly
- Canonlygothroughthepagetable
- Ifaphysicalpageisnotinaprocess'pagetable,itis"invis ible"

Pagetableentrycontainsaccessrightsinformation

- hardwareenforcesthisprotection(trapintoOSifviolationocc urs)
- Thepagetableitselfisinprotectedmemory

Whenallocatinganewphysicalpage, it is cleared

• Importantthattheprocesscannotseethepreviouscontents

- Processiandjcanonlyreadphysicalpage9
- Processicannotevenseepage6

MotivationsforVirtualMemory

- UsePhysicalDRAMasaCachefortheDisk
 - Addressspaceofaprocesscanexceedphysicalmemorysize
 - Sumofaddressspacesofmultipleprocessescanexceedphysical memory
- SimplifyMemoryManagement
 - Multipleprocessesresidentinmainmemory.
 - Eachprocesswithitsownaddressspace
 - Only "active" code and data is a ctually in memory
 - Allocatemorememorytoprocessasneeded.

ProvideProtection

- Oneprocesscan'tinterferewithanother.
 - becausetheyoperateindifferentaddressspaces.
- Userprocesscannotaccessprivilegedinformation
 - different sections of address spaces have different permissions.

VMAddressTranslation

V={0,1,...,N -1}virtualaddressspace N>M P={0,1,...,M -1}physicaladdressspace

MAP:V \rightarrow PU{ \varnothing }addressmappingfunction

MAP(a) =a'ifdataatvirtualaddress \underline{a} ispresentatphysical address $\underline{a'}$ inP = \emptyset ifdataatvirtualaddressaisnotpresentinP

VMAddressTranslation

Parameters

- P=2 p =pagesize(bytes).
- N=2 n = Virtual address limit
- M=2 ^m =Physicaladdresslimit

Noticethatthepageoffsetbitsdon'tchangeasaresultoftra

nslation

class20.ppt

-23-

CS213S'01

PageTables

AddressTranslationviaPageTable

physicaladdress

class20.ppt

- 25 -

CS213S'01

PageTableOperation

Translation

- Separate(setof)pagetable(s)perprocess
- VPNformsindexintopagetable(pointstoapagetableentry)

ComputingPhysicalAddress

- PageTableEntry(PTE)providesinformationaboutpage
 - if(validbit=1)thenthepageisinmemory.
 - » Usephysicalpagenumber(PPN)toconstructaddress
 - if(validbit=0)thenthepageisondisk
 - » Pagefault
 - » Mustloadpagefromdiskintomainmemorybeforecontinuing

CheckingProtection

- Accessrightsfieldindicateallowableaccess
 - -e.g.,read -only,read -write,execute -only
 - -typicallysupportmultipleprotectionmodes(e.g.,kernelvs.us er)
- Protectionviolationfaultifuserdoesn'thavenecessarypermis sion

IntegratingVMandCache

MostCaches"PhysicallyAddressed"

- Accessedbyphysicaladdresses
- Allowsmultipleprocessestohaveblocksincacheatsametime
- Allowsmultipleprocessestosharepages
- Cachedoesn'tneedtobeconcernedwithprotectionissues
 - Accessrightscheckedaspartofaddresstranslation

PerformAddressTranslationBeforeCacheLookup

- Butthiscouldinvolveamemoryaccessitself(ofthePTE)
- Ofcourse,pagetableentriescanalsobecomecached

SpeedingupTranslationwithaTLB

"Translation Lookaside Buffer" (TLB)

- SmallhardwarecacheinMMU(MemoryManagementUnit)
- Mapsvirtualpagenumberstophysicalpagenumbers
- Containscompletepagetableentriesforsmallnumberofpages

AddressTranslationwithaTLB

ExampleSizes

VirtualAddress(32bits)

- 19bitspagenumber
- 13bitspageoffset(8 Kbyte pages)

TLB

- 128entries
- 4-waysetassociative
- HowmanybitsistheTLBtag?

L1Cache

- 32Kbytes
- 4-waysetassociative
- 32-bytelinesize
- HowmanybitsintheCacheTag?

Virtualaddress

tag	idx	pageoffset
-----	-----	------------

physicaladdress

tag	idx	offst

Multi-LevelPageTables

Given:

- 4KB(2 12)pagesize
- 32-bitaddressspace
- 4-bytePTE

Problem:

- Wouldneeda4MBpagetable!
 - $-2^{20} * 4 bytes$

Commonsolution

- multi-levelpagetables
- e.g.,2 -leveltable(P6)
 - Level1table:1024entries,eachof whichpointstoaLevel2pagetable.
 - Level2table:1024entries,eachof whichpointstoapage

MainThemes

Programmer's View

- Large"flat"addressspace
 - Canallocatelargeblocksofcontiguousaddresses
- Processor"owns"machine
 - Hasprivateaddressspace
 - Unaffectedbybehaviorofotherprocesses

SystemView

- Uservirtualaddressspacecreatedbymappingtosetofpages
 - Neednotbecontiguous
 - Allocateddynamically
 - Enforceprotectionduring address translation
- OSmanagesmanyprocessessimultaneously
 - Continuallyswitchingamongprocesses
 - Especiallywhenonemustwaitforresource
 - » E.g., diskl/Otohandlepagefault