15-213

Virtual Memory
April 3, 2001

Topics
* Motivations for VM
» Address translation
» Accelerating translation with

cl ass20. ppt

TLBs

Motivations for Virtual Memory
* Use Physical DRAM as a Cache for the Disk

» Address space of a process can exceed physical memory size
« Sum of address spaces of multiple processes can exceed physical
memory
e Simplify Memory Management
» Multiple processes resident in main memory.
— Each process with its own address space
* Only “active” code and data is actually in memory
— Allocate more memory to process as needed.

Provide Protection
* One process can't interfere with another.
—because they operate in different address spaces.
» User process cannot access privileged information
— different sections of address spaces have different permissions.

cl ass20. ppt —2_ CS 213S01

Motivation #1: DRAM a “Cache” for Disk

Full address space is quite large:
o 32-bit addresses: ~4,000,000,000 (4 billion) bytes
* 64-bit addresses: ~16,000,000,000,000,000,000 (16 quintillion) byte s

Disk storage is ~170X cheaper than DRAM storage
e 20 GB of DRAM: ~ $20,000
« 20 GB ofdisk: ~ $120

To access large amounts of datain a cost -effective
manner, the bulk of the data must be stored on disk

256 MB: ~$250 20 GB: ~$120
-
4 MB: ~$400 ~_ B
SRAM | «—» DRAM |l¢——> Disk
v

cl ass20. ppt _ 3 CS 213S01

Levels in Memory Hierarchy

cache virtual memory
< > <« >
C
CPU 88 |all 32B |\Memory f4KE @
:
e
Register Cache Memory Disk Memory
size: 32B 32 KB-4MB 128 MB 20 GB
speed: 1ns 2ns 50 ns 8 ms
$/Mbyte: $100/MB $1.00/MB $0.006/MB
line size: 8 B 32B 4 KB

larger, slower, cheaper

cl ass20. ppt _4— CS 213S01

DRAM vs. SRAM as a “Cache”
DRAM vs. disk is more extreme than SRAM vs. DRAM

» Access latencies:
—DRAM ~10X slower than SRAM
—Disk ~100,000X slower than DRAM
* Importance of exploiting spatial locality:
— First byte is ~100,000X slower than successive bytes on disk
»VS. ~4X improvement for page-mode vs. regular accesses to DRAM
« Bottom line:

— Design decisions made for DRAM caches driven by enormous cost of
misses

SRAM [&—»| DRAM |¢—» Disk

cl ass20. ppt _5_ CS 213S01

Impact of These Properties on Design

If DRAM was to be organized similar to an SRAM cache, how
would we set the following design parameters?

e Line size?

o Associativity ?

» Write through or write back?

What should the impact of these choices be on:
* miss rate

e hittime

* miss latency

» tag storage overhead

cl ass20. ppt —6— CS 213S01

Locating an Object in a “Cache”
SRAM Cache

» Tag stored with cache line

e Maps from cache block to memory blocks
—From cached to uncached form

* No tag for block not in cache

« Hardware retrieves information

—can quickly match against multiple tags “Cache”
Tag Data
Object Name O/ D 243
” = X? < 1 X 17
N-1: J 105

cl ass20. ppt _7— CS 213S01

Locating an Object in a “Cache” (cont.)
DRAM Cache

» Each allocate page of virtual memory has entry in page table
« Mapping from virtual pages to physical pages
— From uncached form to cached form
» Page table entry even if page not in memory
— Specifies disk address
* OS retrieves information

Page Table “Cache”
Location Data
Object Name D: 0 0: 243
X J: On Disk 1: 17 N
\ . 7 5
. . // *
X: 1 N-1: 105

cl ass20. ppt _8— CS 213S01

A System with Physical Memory Only

Examples:
* most Cray machines, early PCs, nearly all embedded systems, etc.

Memory

_ 0:
Physical 1:

T~

N-1:

CPU

Addresses generated by the CPU point directly to bytes in physic al memory

cl ass20. ppt —9-— CS 213S01

A System with Virtual Memory

Examples:

- workstations, servers, modern PCs, etc. Memory
0:
Page Table 1:
Virtual Physical
Addresses O: Add¥esses
1:

CPU

P-1:

Address Translation: Hardware converts virtual addresses to
physical addresses via an OS-managed lookup table (page table)

cl ass20. ppt ~10 - CS213S01

Page Faults (Similar to “Cache Misses”)

What if an object is on disk rather than in memory?
» Page table entry indicates virtual address not in memory
* OS exception handler invoked to move data from disk into memory
— current process suspends, others can resume
— OS has full control over placement, etc.

Before fault

| Page Table
Addresses Addresees |
CPU e
W= ...
Disk
cl ass?20. ppt

Memory

After fault
Memory
_ Page Table
Addrosees Addresses |
CPU i} -V
~a A

~ 11—

CS 213501

Servicing a Page Fault

Processor Signals
Controller

» Read block of length P
starting at disk address
X and store starting at
memory address Y
Read Occurs

* Direct Memory Access
(DMA)

* Under control of I/0
controller

| / O Controller
Signals Completion
* [nterrupt processor

* OS resumes suspended
process

cl ass?20. ppt

(2) DMA Transfer

(1) Initiate Block Read

Processor
Reg

Cache

(3) Read
Done

- 12 —

Disk

N~

Disk

CS 213501

Motivation #2: Memory Management

Multiple processes can reside in physical memory.

How do we resolve address conflicts?
« what Iif two processes access something at the same address?

memory invisible to

kernel virtual memory user code

stack

v
A
. Memory mapped region
LI n UX/X86 forshared libraries
rocess
P A

memory runtime heap (via malloc)
Image uninitialized data (.bss)

initialized data (.data)
program text (.text)
forbidden

%esp

14 the “ brk” ptr

cl ass20. ppt ~ 13— CS213S01

Solution: Separate Virtual

 Virtual and physical address spaces divided into equal

— blocks are called “pages” (both virtual and physical)
» Each process has its own virtual address space

Addr . Spaces

-sized blocks

— operating system controls how virtual pages as assigned to physi cal

memory

Virtual 0
Address
Space for

Process 1:
N-1

Virtual 0
Address
Space for

Process 2:
N-1

cl ass?20. ppt

0
Address Translation
VP 1 » PP2
VP 2
PP 7
VP 1
VP 2 PP 10
M-1

—14 —

Physical
Address
Space

(DRAM)

(e.g., read/only
library code)

CS 213501

Contrast: Macintosh Memory Model
MAC OS 1-9

* Does not use traditional virtual memory

P1 Pointer Table Shared Address Space

Process P / A
!7

B

“Handles” P2 Pointer T c
Proc;w

— | D

..—
—>
E

All program objects accessed through “handles”
 Indirect reference through pointer table
» Objects stored in shared global address space

cl ass?20. ppt

- 15 - CS 213501

Macintosh Memory Management

Allocation/ Deallocation
« Similar to free -list management of malloc /free

Compaction

« Can move any object and just update the (unique) pointer in poin ter
table

Shared Address Space

/ B
Pro:w —>

P1 Pointer Table

,7 A
“Handles” P2 PointesTable C
Proiw
'/ D
o —>
E
cl ass?20. ppt

- 16 - CS 213501

Mac vs. VM -Based Memory Mgmt

Allocating, deallocating , and moving memory:
« can be accomplished by both techniques

Block sizes:
 Mac: variable -sized
—may be very small or very large
« VM: fixed -size
—size is equal to one page (4KB on x86 Linux systems)
Allocating contiguous chunks of memory:
« Mac: contiguous allocationis required

« VM: can map contiguous range of virtual addresses to disjoint
ranges of physical addresses

Protection
* Mac: “wild write” by one process can corrupt another’s data

cl ass?20. ppt

-17 - CS 213501

MAC OS X

“Modern” Operating System
 Virtual memory with protection
e Preemptive multitasking

— Other versions of MAC OS require processes to voluntarily reling uish
control

Based on MACH OS
* Developed at CMU in late 1980’s

cl ass20. ppt ~18 — CS213S01

Motivation #3: Protection

Protection goals:
» Cannot read/write memory from another process
« Cannot write into shared libraries

Processes can only see virtual addresses

« Cannot get to physical addresses directly
« Can only go through the page table
 If a physical page is not in a process’ page table, it is “invis ible”

Page table entry contains access rights information
» hardware enforces this protection (trap into OS if violation occ urs)
* The page table itself is in protected memory

When allocating a new physical page, it is cleared
* Important that the process cannot see the previous contents

cl ass20. ppt ~19 — CS213S01

Protection: Example

Page Tables Memory
Read? Write? Physical Addr 0
VP 0:] Yes No PP9 1:
Processi: |vP1]| Yes || Yes PP 4
VP 2:| No No XXXXXXX —>
Read? Write? Physical Addr
VP 0:] Yes Yes PP 6 /
Process|: |vp 1] Yes || No PP 9 N-1:
VP 2:| No No XXXXXXX
* Process i and | can only read physical page 9
e Process i cannot even see page 6
cl ass?20. ppt — 20— CS213S01

Motivations for Virtual Memory
* Use Physical DRAM as a Cache for the Disk

» Address space of a process can exceed physical memory size
« Sum of address spaces of multiple processes can exceed physical
memory
e Simplify Memory Management
» Multiple processes resident in main memory.
— Each process with its own address space
* Only “active” code and data is actually in memory
— Allocate more memory to process as needed.

Provide Protection
* One process can't interfere with another.
—because they operate in different address spaces.
» User process cannot access privileged information
— different sections of address spaces have different permissions.

cl ass20. ppt —21 — CS213S01

VM Address Translation

V={0,1,...,N-1} virtual address space N> M
P={0,1,...,M-1} physical address space

MAP: V - P U {0} address mapping function

MAP(a) = a' if data at virtual address a is present at physical
address a'inP
= [if data at virtual address a is not present in P

page fault
/ fault
Processor handler l
O

J Addr Trans | Main | * [Secondary

a Mechanism » Memory +—_—L_memory
virtual address 8?11”(: ?11: She physical address tCr)“SS ?%r:](;rcgs
memory mgmt unit (MMU) (only if miss)

cl ass20. ppt _22_ CS213S01

VM Address Translation

Parameters
o P =2P =page size (bytes).
e N =2"=Virtual address limit
« M =2™ = Physical address limit

n—1 p p-1 0
virtual page number page offset virtual address

|

address translation >

m-1 l p p-1 M 0
physical page number page offset physical address

Notice that the page offset bits don't change as a result of tra nslation

cl ass20. ppt _ 23— CS213S01

Page Tables

Memory resident

Virtual Page
Number page table
(physical page .
valig or disk address) Physical Memory

1 e
1 e
0 «
1 AN

—> | 1 : é
1 o \
0 * \
1 CaN 4 |
0 % N Disk Storage
1 SO N (swap file or

AN :)
AN \\\ N regular file system file)
NN N
NCN| 4
\\ ‘\\
Ve A

N _
cl ass20. ppt — 24 — \M’Ol

Address Translation via Page Table

page table base register

VPN acts as
table index

virtual address
n—-1 p p-1

virtual page number (VPN)

page offset

valid access physical page number (PPN)

if valid=0
then page
not in memory

4—

cl ass?20. ppt

m-1 v p p-1

v

physical page number (PPN)

page offset

physical address

—25_

CS 213501

Page Table Operation

Translation
» Separate (set of) page table(s) per process
* VPN forms index into page table (points to a page table entry)

Computing Physical Address
» Page Table Entry (PTE) provides information about page
—if (valid bit = 1) then the page is in memory.
» Use physical page number (PPN) to construct address
—if (valid bit = 0) then the page is on disk
» Page fault
» Must load page from disk into main memory before continuing

Checking Protection
» Access rights field indicate allowable access
—e.g., read-only, read-write, execute-only
—typically support multiple protection modes (e.g., kernel vs. us er)
» Protection violation fault if user doesn’t have necessary permis sion

cl ass20. ppt — 26— CS213S01

Integrating VM and Cache

VA PA MmIsSS

——» —> —»

CPU Trans- Cache Malin

lation Memory

1w 1]

Most Caches “Physically Addressed”
» Accessed by physical addresses
» Allows multiple processes to have blocks in cache at same time
» Allows multiple processes to share pages
e Cache doesn’t need to be concerned with protection issues
— Access rights checked as part of address translation

Perform Address Translation Before Cache Lookup
« But this could involve a memory access itself (of the PTE)
» Of course, page table entries can also become cached

cl ass?20. ppt

- 27 — CS 213501

Speeding up Translation with a TLB

“Translation Lookaside Buffer” (TLB)

« Small hardware cache in MMU (Memory Management Unit)
« Maps virtual page numbers to physical page numbers
» Contains complete page table entries for small number of pages

hit
VA > PA - MISS J |
CPU TLB Cache Main
Lookup Memory
< <
Mmiss lT hit
Trans-
lation
e data
<

cl ass20. ppt _ 28— CS213S01

Address Translation with a TLB

n-1 p p-1 0
| virtual page number | page offset | virtual address 3\
valid tag physical page number
TLB
. >
v
>0
J
TLB hit < @ v v
physical address A
tag index l byte offset
valid tag data
Cache
- >
L4
o
cache hit «—(—/— v data /
cl ass20. ppt 29— CS 213 S'01

Example Sizes

Virtual Address (32 bits)

» 19 bits page number
» 13 bits page offset (8 Kbyte pages)

TLB

Virtual address

e 128 entries

» 4-way set associative @g dx | page offset
« How many bits is the TLB tag?
L1 Cache
« 32 Kbytes physical address
* 4-way set associative tag idx |offst

o 32-byte line size
« How many bits in the Cache Tag?

cl ass20. ppt ~ 30— CS213S01

Multi -Level Page Tables

Given:
e 4KB (212) page size
o 32-bit address space
* 4-byte PTE
Problem:

 Would need a 4 MB page table!
—220*4 pytes

Common solution
« multi -level page tables
e e.g., 2-level table (P6)

—Level 1 table: 1024 entries, each of

which points to a Level 2 page table.

—Level 2 table: 1024 entries, each of

which points to a page

cl ass?20. ppt

—31 -

Level 1
Table

Level 2
Tables

CS 213501

Main Themes

Programmer’s View
« Large “flat” address space
— Can allocate large blocks of contiguous addresses
* Processor “owns” machine
—Has private address space
— Unaffected by behavior of other processes

System View

» User virtual address space created by mapping to set of pages
—Need not be contiguous
— Allocated dynamically
— Enforce protection during address translation

» OS manages many processes simultaneously
— Continually switching among processes
— Especially when one must wait for resource

» E.g., disk I/O to handle page fault

cl ass20. ppt _ 32— CS213S01

