
Topics
• Memory Hierarchy

– Locality of Reference
• SRAM Caches

– Direct Mapped
– Associative

Caches
March 20, 2001

class18.ppt

15-213
“ The course that gives CMU its Zip!”

CS 213 S’01– 2 –class18.ppt

Computer System

diskDiskdiskDisk

Memory-I/O bus

Processor

Cache

Memory

I/O
controller

I/O
controller

I/O
controller

Display Network

interrupt

CS 213 S’01– 3 –class18.ppt

Levels in Memory Hierarchy

CPU
regs

C
a
c
h
e

Memory disk

size:
speed:
$/Mbyte:
line size:

200 B
1 ns

8 B

Register Cache Memory Disk Memory

32 KB / 4MB
2 ns
$50/MB
32 B

128 MB
50 ns
$.50/MB
8 KB

30 GB
8 ms
$0.05/MB

larger, slower, cheaper

8 B 32 B 8 KB

cache virtual memory

CS 213 S’01– 4 –class18.ppt

Alpha 21164 Chip Photo

Microprocessor
Report 9/12/94

Caches:
L1 data
L1 instruction
L2 unified
TLB
Branch history

CS 213 S’01– 5 –class18.ppt

Alpha 21164 Chip Caches

Caches:
L1 data
L1 instruction
L2 unified
TLB
Branch history

Right Half
L2

Right Half
L2

L1

I
n
s
t
r.

L1
Data

L2
Tags

L3 Control

CS 213 S’01– 6 –class18.ppt

Locality of Reference
Principle of Locality:

• Programs tend to reuse data and instructions near those they have
used recently.

• Temporal locality: recently referenced items are likely to be
referenced in the near future.

• Spatial locality: items with nearby addresses tend to be referenced
close together in time.

sum = 0;
for (i = 0; i < n; i++)

sum += a[i];
*v = sum;Locality in Example:

• Data
– Reference array elements in succession (spatial)

• Instructions
– Reference instructions in sequence (spatial)
– Cycle through loop repeatedly (temporal)

CS 213 S’01– 7 –class18.ppt

Caching: The Basic Idea
Main Memory

• Stores words
A–Z in example

Cache
• Stores subset of the

words
4 in example

• Organized in lines
– Multiple words

– To exploit spatial locality

Access
• Word must be in cache

for processor to access

Big, Slow Memory

A
B
C
•
•
•

Y
Z

Small,
Fast Cache

A
B

G
H

Processor

CS 213 S’01– 8 –class18.ppt

Basic Idea (Cont.)

Maintaining Cache:
• Each time the processor performs a load or store, bring line

containing the word into the cache
– May need to evict existing line

• Subsequent loads or stores to any word in line performed within
cache

A
B

G
H

Initial

A
B

C
D

Read C

A
B

C
D

Y
Z

C
D

Read ZRead D

Cache holds 2
lines

Each with 2
words

Load line C+D
into cache

“ Cache miss”

Word already in
cache

“ Cache hit”

Load line Y+Z
into cache

Evict oldest
entry

CS 213 S’01– 9 –class18.ppt

• Between any two levels, memory is divided into lines (aka “ blocks”)
• Data moves between levels on demand, in line-sized chunks.
• Invisible to application programmer

– Hardware responsible for cache operation
• Upper-level lines a subset of lower-level lines.

a

a
b

Access word w in line a (hit)

a

a
b

Access word v in line b (miss)

w

b

a

b

a
b

v

Accessing Data in Memory Hierarchy

High
Level

Low
Level

CS 213 S’01– 10 –class18.ppt

Design Issues for Caches
Key Questions:

• Where should a line be placed in the cache? (line placement)
• How is a line found in the cache? (line identification)
• Which line should be replaced on a miss? (line replacement)
• What happens on a write? (write strategy)

Constraints:
• Design must be very simple

– Hardware realization
– All decision making within nanosecond time scale

• Want to optimize performance for “ typical” programs
– Do extensive benchmarking and simulations
– Many subtle engineering tradeoffs

CS 213 S’01– 11 –class18.ppt

Direct-Mapped Caches
Simplest Design

• Each memory line has a unique cache location

Parameters
• Line (or block) size B = 2b

– Number of bytes in each line
– Typically 2X–8X word size

• Number of Sets S = 2s

– Number of lines cache can hold
• Total Cache Size = B*S = 2b+s

Physical Address
• Address used to reference main memory
• m bits to reference M = 2m total bytes
• Partition into fields

– Offset: Lower b bits indicate which byte within line
– Set: Next s bits indicate how to locate line within cache
– Tag: Identifies this line when in cache

m-bit Physical Address

t s b

tag set index offset

CS 213 S’01– 12 –class18.ppt

Indexing into Direct-Mapped Cache

• Use set index bits
to select cache set

Set 0: 0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

Set 1:

Set S–1:

•
•
•

t s b

tag set index offset

Physical Address

CS 213 S’01– 13 –class18.ppt

Direct-Mapped Cache Tag Matching

Identifying Line
• Must have tag match high

order bits of address
• Must have Valid = 1

0 1 • • • B–1Tag Valid

Selected Set:

t s b

tag set index offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

CS 213 S’01– 14 –class18.ppt

Direct Mapped Cache Simulation
M=16 byte addresses, B=2 bytes/line, S=4 sets, E=1 entry/set
Address trace (reads):

0 [0000] 1 [0001] 13 [1101] 8 [1000] 0 [0000]x
t=1 s=2 b=1

xx x

1 0 m[1] m[0]

v tag data
0 [0000] (miss)

(1)

1 0 m[1] m[0]

v tag data

1 1 m[13] m[12]

13 [1101] (miss)

(2)

1 1 m[9] m[8]

v tag data
8 [1000] (miss)

(3)

1 0 m[1] m[0]

v tag data

1 1 m[13] m[12]

0 [0000] (miss)

(4)

CS 213 S’01– 15 –class18.ppt

Why Use Middle Bits as Index?

High-Order Bit Indexing
• Adjacent memory lines would

map to same cache entry
• Poor use of spatial locality

Middle-Order Bit Indexing
• Consecutive memory lines map

to different cache lines
• Can hold C-byte region of

address space in cache at one
time

4-line Cache High-Order
Bit Indexing

Middle-Order
Bit Indexing

00

01

10

11

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

CS 213 S’01– 16 –class18.ppt

Direct Mapped Cache Implementation
(DECStation 3100)

tag

31 30 29 19 18 17 16 15 14 13 5 4 3 2 1 0

set byte
offset

valid tag (16 bits) data (32 bits)

data

=

hit

16,384 sets

CS 213 S’01– 17 –class18.ppt

Properties of Direct Mapped Caches
Strength

• Minimal control hardware overhead
• Simple design
• (Relatively) easy to make fast

Weakness
• Vulnerable to thrashing
• Two heavily used lines have same cache index
• Repeatedly evict one to make room for other

Cache Line

CS 213 S’01– 18 –class18.ppt

Vector Product Example

Machine
• DECStation 5000
• MIPS Processor with 64KB direct-mapped cache, 16 B line size

Performance
• Good case: 24 cycles / element
• Bad case: 66 cycles / element

float dot_prod(float x[1024], y[1024])
{

float sum = 0.0;
int i;
for (i = 0; i < 1024; i++)
sum += x[i]*y[i];

return sum;
}

CS 213 S’01– 19 –class18.ppt

Thrashing Example

• Access one element from each array per iteration

x[1]

x[0]

x[1020]

•
•
•

•
•
•

x[3]

x[2]

x[1021]

x[1022]

x[1023]

y[1]

y[0]

y[1020]

•
•
•

•
•
•

y[3]

y[2]

y[1021]

y[1022]

y[1023]

Cache
Line

Cache
Line

Cache
Line

Cache
Line

Cache
Line

Cache
Line

CS 213 S’01– 20 –class18.ppt

x[1]

x[0]

x[3]

x[2]

y[1]

y[0]

y[3]

y[2]
Cache
Line

Thrashing Example: Good Case

Access Sequence
• Read x[0]

– x[0], x[1], x[2], x[3] loaded

• Read y[0]
– y[0], y[1], y[2], y[3] loaded

• Read x[1]
– Hit

• Read y[1]
– Hit

• • • •
• 2 misses / 8 reads

Analysis
• x[i] and y[i] map to different

cache lines
• Miss rate = 25%

– Two memory accesses / iteration

– On every 4th iteration have two
misses

Timing
• 10 cycle loop time
• 28 cycles / cache miss
• Average time / iteration =

10 + 0.25 * 2 * 28

CS 213 S’01– 21 –class18.ppt

x[1]

x[0]

x[3]

x[2]

y[1]

y[0]

y[3]

y[2]
Cache
Line

Thrashing Example: Bad Case

Access Pattern
• Read x[0]

– x[0], x[1], x[2], x[3] loaded

• Read y[0]
– y[0], y[1], y[2], y[3] loaded

• Read x[1]
– x[0], x[1], x[2], x[3] loaded

• Read y[1]
– y[0], y[1], y[2], y[3] loaded

• • •
• 8 misses / 8 reads

Analysis
• x[i] and y[i] map to same cache

lines
• Miss rate = 100%

– Two memory accesses / iteration

– On every iteration have two
misses

Timing
• 10 cycle loop time
• 28 cycles / cache miss
• Average time / iteration =

10 + 1.0 * 2 * 28

CS 213 S’01– 22 –class18.ppt

Set Associative Cache
Mapping of Memory Lines

• Each set can hold E lines
– Typically between 2 and 8

• Given memory line can map to any entry within its given set

Eviction Policy
• Which line gets kicked out when bring new line in
• Commonly either “ Least Recently Used” (LRU) or pseudo-random

– LRU: least-recently accessed (read or written) line gets evicted

Set i:
0 1 • • • B–1Tag Valid

•
•
•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

LRU State

Line 0:

Line 1:

Line E–1:

CS 213 S’01– 23 –class18.ppt

Set 0:

Set 1:

Set S–1:

•
•
•

t s b

tag set index offset

Physical Address

Indexing into 2-Way Associative Cache

• Use middle s bits to select
from among S = 2s sets

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

CS 213 S’01– 24 –class18.ppt

2-Way Associative Cache Tag Matching
Identifying Line

• Must have one of the
tags match high order
bits of address

• Must have Valid = 1 for
this line

Selected Set:

t s b

tag set index offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

0 1 • • • B–1Tag Valid
0 1 • • • B–1Tag Valid

CS 213 S’01– 25 –class18.ppt

2-Way Set Associative Simulation
M=16 addresses, B=2 bytes/line, S=2 sets, E=2 entries/set
Address trace (reads):

0 [0000] 1 [0001] 13 [1101] 8 [1000] 0 [0000]

0 (miss)

13 (miss)

8 (miss)
(LRU replacement)

0 (miss)
(LRU replacement)

xx
t=2 s=1 b=1

x x

1 00 m[1] m[0]

v tag data v tag data

v tag data v tag data
1 00 m[1] m[0] 1 11 m[13] m[12]

1 10 m[9] m[8]

v tag data v tag data
1 11 m[13] m[12]

1 10 m[9] m[8]

v tag data v tag data
1 00 m[1] m[0]

CS 213 S’01– 26 –class18.ppt

Two-Way Set Associative Cache
Implementation

• Set index selects a set from the cache
• The two tags in the set are compared in parallel
• Data is selected based on the tag result

Cache Data

Cache Line 0

Cache TagValid

:: :

Cache Data

Cache Line 0

Cache Tag Valid

: ::

Set Index

Mux 01Sel1 Sel0

Cache Line

Compare
Adr Tag

Compare

OR

Hit

Adr Tag

CS 213 S’01– 27 –class18.ppt

Fully Associative Cache
Mapping of Memory Lines

• Cache consists of single set holding E lines
• Given memory line can map to any line in set
• Only practical for small caches

Entire Cache

0 1 • • • B–1Tag Valid

•
•
•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

LRU State

Line 0:

Line 1:

Line E–1:

CS 213 S’01– 28 –class18.ppt

Fully Associative Cache Tag Matching
Identifying Line

• Must check all of the tags for
match

• Must have Valid = 1 for this line

t b

tag offset

Physical Address

= ?

= 1?

• Lower bits of address
select byte or word
within cache line

0 1 • • • B–1Tag Valid

•
•
•

0 1 • • • B–1Tag Valid

0 1 • • • B–1Tag Valid

•
•
•

CS 213 S’01– 29 –class18.ppt

Fully Associative Cache Simulation
M=16 addresses, B=2 bytes/line, S=1 sets, E=4 entries/set
Address trace (reads):

0 [0000] 1 [0001] 13 [1101] 8 [1000] 0 [0000]xxx
t=3 s=0 b=1

x

1 000 m[1] m[0]
v tag data

1 110 m[13] m[12]

13 (miss)

(2)

v tag data
8 (miss)

(3)

1 000 m[1] m[0]
1 110 m[13] m[12]
1 100 m[9] m[8]

1 00 m[1] m[0]
v tag data

0 (miss)

(1) set ø

CS 213 S’01– 30 –class18.ppt

Write Policy
• What happens when processor writes to the cache?
• Should memory be updated as well?

Write Through:
• Store by processor updates cache and memory.
• Memory always consistent with cache
• Never need to store from cache to memory
• ~2X more loads than stores

Processor

Cache

Memory
Store

Load
Cache
Load

CS 213 S’01– 31 –class18.ppt

Write Strategies (Cont.)
Write Back:

• Store by processor only updates cache line
• Modified line written to memory only when it is evicted

– Requires “dirty bit” for each line

» Set when line in cache is modified
» Indicates that line in memory is stale

• Memory not always consistent with cache

Processor

Cache
Memory

Store

Load Cache
Load

Write
Back

CS 213 S’01– 32 –class18.ppt

Multi-Level Caches

size:
speed:
$/Mbyte:
line size:

200 B
3 ns

8 B

8-64 KB
3 ns

32 B

128 MB DRAM
60 ns
$1.50/MB
8 KB

30 GB
8 ms
$0.05/MB

larger, slower, cheaper

Memory disk

TLB

L1 Icache

L1 Dcacheregs
L2

Cache

Processor

1-4MB SRAM
6 ns
$100/MB
32 B

larger line size, higher associativity, more likely to write back

Options: separate data and instruction caches, or a unified cache

CS 213 S’01– 33 –class18.ppt

Processor Chip

Alpha 21164 Hierarchy

• Improving memory performance was a main design goal
• Earlier Alpha’s CPUs starved for data

L1 Data
1 cycle latency

8KB, direct
Write-through
Dual Ported

32B lines

L1 Instruction
8KB, direct
32B lines

Regs.
L2 Unified

8 cycle latency
96KB

3-way assoc.
Write-back

Write allocate
32B/64B lines

L3 Unified
1M-64M
direct

Write-back
Write allocate

32B or 64B
lines

Main
Memory

Up to 1TB

CS 213 S’01– 34 –class18.ppt

Processor Chip

Pentium III Xeon Hierarchy

L1 Data
1 cycle latency

16KB
4-way

Write-through
32B lines

L1 Instruction
16KB, 4-way

32B lines

Regs. L2 Unified
512K
4-way

Write-back
Write allocate

32B lines

Main
Memory

Up to 4GB

CS 213 S’01– 35 –class18.ppt

Cache Performance Metrics
Miss Rate

• fraction of memory references not found in cache
(misses/references)

• Typical numbers:
3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
• time to deliver a line in the cache to the processor (includes time to

determine whether the line is in the cache)
• Typical numbers:

1 clock cycle for L1
3-8 clock cycles for L2

Miss Penalty
• additional time required because of a miss

– Typically 25-100 cycles for main memory

CS 213 S’01– 36 –class18.ppt

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,

and
cheaper
storage
devices

remote secondary storage
(distributed file systems, Web servers)

Local disks hold files
retrieved from disks
on remote network
servers.

Main memory holds disk
blocks retrieved from local
disks.

L2 cache holds cache lines
retrieved from memory.

CPU registers hold words
retrieved from cache
memory.

off-chip L2
cache (SRAM)

L1 cache holds cache lines
retrieved from memory.

L0:

L1:

L2:

L3:

L4:

L5:

Caching as a General Principle

CS 213 S’01– 37 –class18.ppt

Forms of Caching

Hardware0On-Chip TLBAddress
Translations

TLB

Browser10,000,000Processor DiskWeb PagesBrowser
Cache
Web Cache

Network File
Cache

Buffered Files

Virtual
Memory

SRAM
SRAM

Registers

Cache Type

Web Pages

Parts of Files

File Buffer

4-KB page
32-byte block
32-byte block

4-byte word

What Cached

Akamai
Server

1,000,000,000Server Disks

OS100Main Memory

Hardware1On-Chip L1
Hardware10Off-Chip L2

AFS Client10,000,000Processor Disk

MMU+OS100Main Memory

Compiler0CPU Registers

Managed
By

Latency
(cycles)

Where Cached

