15-213

“The course that gives CMU its Zip!”

Levels in Memory Hierarchy

cache virtual memory
Caches
March 20, 2001 c
cru 28 |al 328 \yemory | 8K @
| "
e
Topics
« Memory Hierarchy Register Cache Memory Disk Memory
—Locality of Reference size: 200B 32KB/4MB 128 MB 30GB
« SRAM Caches speed: 1ns 2ns 50 ns 8 ms
_Di $/Mbyte: $50/MB $.50/MB $0.05/MB
Dlrect-M-apped line size: 8B 32B 8 KB
—Associative
larger, slower, cheaper >
>
cl ass18. ppt cl ass18. ppt [cs213501]

Computer System

interrupt

Processor

\ Memory-1/O bus .

110 110 110

‘ Display I ‘ Network I

cl ass18. ppt

CS 213801

~Alpha 21164 Chip Photo

Microprocessor
Report 9/12/94

Caches:

L1 data

L1instruction

L2 unified

TLB

Branch history

[+)

£
=
T
=
B
=

Leit Half -
2 Cache

cl ass18. ppt

Page 1

Alpha 21164 Chip Caches

Caching: The Basic Idea

o 13 Control Main Memory
{ al
Caches: ng « Stores words Small, Big, Slow Memory
L1data A-Zin example Fast Cache
L1instruction Cache Processor [A]
L2 unified « Stores subset of the IEl
TLB L words I:lH
Data .
Branch history L1 4 in example
: « Organized in lines
n —Multiple words
f —To exploit spatial locality
o Access
« Word must be in cache
for processor to access
Right Half
L2 L2
Tags
cl ass18. ppt Tcs 23501 cl ass18. ppt [cszi3s01]
Locality of Reference Basic Idea (Cont.)
Initial Read C Read D Read Z

Principle of Locality:
« Programs tend to reuse data and instructions near those they have
used recently.
« Temporal locality: recently referenced items are likely to be
referenced in the near future.

« Spatial locality: items with nearby addresses tend to be referenced
close together in time.

sum= 0;
for (i =0; i <n; i+4)
L sum+= a[i];
Locality in Example: *v = sum
« Data
—Reference array elements in succession (spatial)
« Instructions
—Reference instructions in sequence (spatial)
—Cycle through loop repeatedly (temporal)
cl ass18. ppt [cs213501]

Cache holds 2 Load line C+D Word already in Load line Y+Z
lines into cache cache into cache

Each with 2 “Cache miss” “Cache hit” Evict oldest
words entry

Maintaining Cache:
« Each time the processor performs aload or store, bring line
containing the word into the cache
—May need to evict existing line
« Subsequent loads or stores to any word in line performed within
cache

cl ass18. ppt

CS 213501

Page 2

Accessing Data in Memory Hierarchy

Between any two levels, memory is divided into lines (aka “blocks”)
Data moves between levels on demand, in line-sized chunks.
Invisible to application programmer

—Hardware responsible for cache operation

Upper-level lines a subset of lower-level lines.

Access word Win line a (hit) Access word V in line b %miss)

w \Y
High 2 a a
Level

b

fo
Low b b b
Level a a a
cl ass18. ppt CS 213501

Direct-Mapped Caches
Simplest Design
« Each memory line has a unique cache location
Parameters
« Line (or block) size B =2
—Number of bytes in each line
—Typically 2X-8X word size
« Number of Sets S = 2
—Number of lines cache can hold
- Total Cache Size = B*S = 2b+s t s b
Physical Address ‘ ' - ' ‘
+ Address used to reference main memory 29 setindex offset
« m bits to reference M = 2™ total bytes
« Partition into fields
—Offset: Lower b bits indicate which byte within line
—Set: Next s bits indicate how to locate line within cache
—Tag: Identifies this line when in cache

m-bit Physical Address

cl ass18. ppt

CS213S'01

Design Issues for Caches

Key Questions:
« Where should aline be placed in the cache? (line placement)
* How is aline found in the cache? (line identification)
« Which line should be replaced on a miss? (line replacement)
« What happens on a write? (write strategy)
Constraints:
« Design must be very simple
—Hardware realization
—All decision making within nanosecond time scale
« Want to optimize performance for “typical” programs
—Do extensive benchmarking and simulations
—Many subtle engineering tradeoffs

cl ass18. ppt

CS213S'01

Indexing into Direct-Mapped Cache

Set 0: Tag |[Valid] [O] 1] e°° E—;I
« Use set index bits
to select cache set Set 1: Tag |[valid] [Of1] <" E—;I

Set 5-1: |[Tag Jvaiid] [o]1] --- F—1||

offset

tag set index

Physical Address

cl ass18. ppt

CS213S'01

Page 3

Direct-Mapped Cache Tag Matching

Identifying Line

« Must have tag match high
order bits of address

* Must have Valid

t

=1

Selected Set:

=1?

jvaig) [T~ B

T

=7 4}{ Tag
s b
I J

tag

setindex

offset

Physical Address

cl ass18. ppt

Lower bits of address
select byte or word
within cache line

CS213S'01

Why Use Middle Bits as Index?

4-line Cache High-Order

N
High-Order Bit Indexing

« Adjacent memory lines would
map to same cache entry

« Poor use of spatial locality

Middle-Order Bit Indexing

« Consecutive memory lines map

to different cache lines

« Can hold C-byte region of
address space in cache at one
time

cl ass18. ppt

Bit Indexing

)

DA\

Middle-Order
Bit Indexing

‘@V///////////An

Direct Mapped Cache Simulation

M=16 byte addresses, B=2 bytes/line, S=4 sets, E=1 entry/set

t=1 s=2 b=l Address trace (reads):
0[0000] 1 [0001] 13 [1101] 8 [1000] O [0000]
0 [0000] (miss) 13 [1101] (miss)
Vv tag data Vv tag data
(1))
8 [1000] (miss) 0 [0000] (miss)
Vv tag data Vv tag data
3) 4)
cl ass18. ppt [cs213501]

Direct Mapped Cache Implementation
(DECStation 3100)

313029
\ tag |

19181716 151413 5432 10

set LbyteJ

ffse

valid tag (16 bits) data (32 bits)

16,384 sets
data
hit
cl ass18. ppt CS 213501

Page 4

Properties of Direct Mapped Caches

Thrashing Example

Strength
« Minimal control hardware overhead x[0] y[0]
« Simple design x[1] Cache y[1] Cache
« (Relatively) easy to make fast X{ g Line Y{ g Line
X y
Weakness
« Vulnerable to thrashing
« Two heavily used lines have same cache index ¢ . (L:iicehe ¢ . (L:iicehe
* Repeatedly evict one to make room for other ¢ .
Cache Line
X[1020] y[1020]
x[1021] Cache y[1021] Cache
x[1022] Line y[1022] Line
/ X[1023] v y[1023]
« Access one element from each array per iteration
cl ass18. ppt g [Cs213501] class18. ppt [cs213501]
Vector Product Example Thrashing Example: Good Case
float dot_prod(float x[1024], y[1024]) &\\\\\N y[0]
{ £l -00 L y[1] Cache
intoa}'sum_ o &\\\\ y[2] Line
for (i =0, i < 1024; i++) L[yI3l
sum += x[i]*y[i]; .
return sum Access Sequence Analysis
} « Read x[0] « x[i] and y[i] map to different
—x[0], x[1], x[2], X(3] loaded cache lines
. « Read y[0] * Miss rate = 25%
Machine . —y[0], y[1], y[2], y[3] loaded —Two memory accesses / iteration
+ DECStation 5000 + Read x[1] - On every 4th iteration have two
* MIPS Processor with 64KB direct-mapped cache, 16 B line size _Hit misses
Performance + Read y[1] Timing
i _Hit « 10cycle loop time
« Good case: 24 cycles / element L + 28 cycles / cache miss
« Bad case: 66 cycles / element . 2misses /8 reads + Average time / iteration =
10+0.25*2*28
cl ass18. ppt [cszi3s01] cl ass18. ppt

CS213S'01

Page 5

Thrashing Example: Bad Case

L
&§\\\N Cache
A

N Line
A

Access Pattern Analysis

* Read x[0] « x[i] and y[i] map to same cache
~x[0], X[1], x(2], X[3] loaded lines

+ Read y[0] « Miss rate = 100%
—y[0], y[1], 2], y[3] loaded —Two memory accesses / iteration

« Read x[1] —On every iteration have two
-X[0], X{1, (2], x[3] loaded o misses

« Read y[1] Timing
—y[0], y[1], y[2], y[3] loaded « 10cycle loop time

ces « 28cycles/cache miss

« Average time / iteration =
10+1.0*2*28

CS213S'01

« 8misses /8 reads

cl ass18. ppt

Indexing into 2-Way Associative Cache

[Tag Jvaid [o]2] -~ B

[Tag |Vaid [o]1]--+ B

* Use middle s bits to select Set 0:
from among S = 2s sets

Set 1.

[Tag Jvaid [o]z] -+ B
[Tag Jvaid [0 1] -+ B

Set S-1:

tag set index offset

Physical Address

cl ass18. ppt

CS213S'01

Set Associative Cache

Mapping of Memory Lines
« Each set can hold E lines
—Typically between 2 and 8
« Given memory line can map to any entry within its given set
Eviction Policy
« Which line gets kicked out when bring new line in
« Commonly either “Least Recently Used” (LRU) or pseudo-random
—LRU: least-recently accessed (read or written) line gets evicted

Line 0: Tag |[valid] [0 1] se- E_]
Line 1: Tag |Valid] [0] 1] <°* E_]

Set i:

Line E-1: Tag |[Valid] [0]1] <~ E_]

[cs213s01]

cl ass18. ppt

2-Way Associative Cache Tag Matching

Identifying Line
* Must have one of the

tags match high order =1?
bits of address

« Must have Valid =1 for Selected Set: |
this line

o Tag Jvalid] [0 [1] <+« B

T

« Lower bits of address
select byte or word

within cache line

tag set index offset

Physical Address

cl ass18. ppt

CS213S'01

Page 6

2-Way Set Associative Simulation

M=16 addresses, B=2 bytes/line, S=2 sets, E=2 entries/set
Address trace (reads):

0[0000] 1 [0001] 13 [1101] 8 [1000] O [0000]
v tag data v tag data
—1 I 1 I] 0 (miss)
1 | [1 | J
v tag data v tag data
= s
v tag data v tag data
1] 1 | | .
I — 11 \ 8 (miss)
(LRU replacement)
v tag data v tag data
11 I I] 0 (miss)
L1 I [1 I ‘ (LRU replacement)
cl ass18. ppt [cs213501]

Fully Associative Cache

Mapping of Memory Lines
« Cache consists of single set holding E lines
« Given memory line can map to any line in set
« Only practical for small caches

Entire Cache

LRU State
Tag |[valid] [0 1] == E—II
Tag |[valid] [0 1] == E—II

Line 0:

Line 1:

Line E-1: [Tag Jvaiid [0]1] -+« P1

cl ass18. ppt

CS213S'01

Two-Way Set Associative Cache
Implementation

« Setindex selects a set from the cache
« The two tags in the set are compared in parallel
« Datais selected based on the tag result

Set Index
Valid Cache Data

Cache Line 0

Cache Tag Cache Data

Cache Line 0

Cache Tag

Valid

:

Adr Tag
—

|

cl ass18. ppt

Cache Line

CS213S'01

Fully Associative Cache Tag Matching

=1?

J Tag i
J Tag ||Vali

Identifying Line
« Must check all of the tags for
match
« Must have Valid = 1 for this line

[Tl
DR E

| g vara) [0 [2] ==~ -1
T

« Lower bits of address
select byte or word
within cache line

=7

tag offset

Physical Address
cl ass18. ppt

CS213S'01

Page 7

Fully Associative Cache Simulation

M=16 addresses, B=2 bytes/line, S=1 sets, E=4 entries/set

Address trace (reads):
0[0000] 1 [0001] 13 [1101] 8 [1000] O [0000]

0 (miss) 13 (miss)
v _tag data v _tag data » Indicates that line in memory is stale
+ Memory not always consistent with cache
1) setg (2)
8 (miss) Store Write
v tag data Processor Back Memory
Cache |[e——
(©)] Load Cache
Load
cl ass18. ppt [Csa3so1] cl ass18. ppt CS 213501

Write Strategies (Cont.)

Write Back:
« Store by processor only updates cache line
« Modified line written to memory only when it is evicted
—Requires “dirty bit” for each line
» Set when line in cache is modified

Write Policy

« What happens when processor writes to the cache?
« Should memory be updated as well?
Write Through:
« Store by processor updates cache and memory.
« Memory always consistent with cache
* Never need to store from cache to memory
« ~2X more loads than stores

Multi-Level Caches

Options: separate data and instruction caches, or a unified cache

Memory f——
o | Memoy

Lllcache | @ | Cache

Processor \

Store size: 200B 8-64 KB 1-4MB SRAM 128 MBDRAM 30 GB
Memory speed: 3ns 3 ns 6ns 60 ns 8ms
Processor $/Mbyte: $100/MB $1.50/MB $0.05/MB
> line size: 8B 32B 32B 8 KB
Cache |¢— larger, slower, cheaper
Load >
Cache o X .
Load larger line size, higher associativity, more likely to write back
cl ass18. ppt [Cs213s01] cl ass18. ppt [cs213501]

Page 8

Alpha 21164 Hierarchy

L1 Data
1cycle latency
> sk, direct L Unified L5 Unified
Write-through |€—| nifie nifie
[4—>| pual Pgneg 8 cycle latency 1M-64M
328 lines 96KB direct Main
3-way assoc. || write-back [€—%| Memory
Write-back Write allocate Up to 1TB
L1 Instruction Write allocate 32B or 64B

8KB, direct 32B/64B lines lines

32B lines

Processor Chip

« Improving memory performance was a main design goal
« Earlier Alpha’'s CPUs starved for data

cl ass18. ppt

CS213S'01

Cache Performance Metrics

Miss Rate

« fraction of memory references not found in cache
(misses/references)

« Typical numbers:
3-10% for L1
can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
« time to deliver a line in the cache to the processor (includes time to
determine whether the line is in the cache)

« Typical numbers:
1 clock cycle for L1
3-8 clock cycles for L2

Miss Penalty

« additional time required because of a miss
—Typically 25-100 cycles for main memory

cl ass18. ppt

CS213S'01

Pentium Il Xeon Hierarchy

Caching as a General Principle

LO:e ister CPU registers hold words
TIDa 9 } retrieved from cache
1cycle latency L1,/ on-chip L1 memory.
16KB cache (SRAM) L1 cache holds cache lines
4-way ™ L2 Unified Larger, K retrieved from memory.
erterth.rcugh 512K Main slower, L2: off-chip L2)
32B lines. 4-way <«—>| vemory and cache (SRAM) L2 cache holds cache lines
w‘?a’{:;?:f;e Up to 4GB cheaper retrieved from memory.
L1 Instruction 32B lines storage L3: main memory
16KB, 4-way |« devices (DRAM) : i
32B lines Main memory holds disk
blocks retrieved from local
Processor Chip disks.
L4: local secondary storage
(local disks) Local disks hold files
retrieved from disks
A on remote network
rvers.
L5: remote secondary storage servers
(distributed file systems, Web servers)
cl ass18. ppt CS 213501 cl ass18. ppt CS 213501

Page 9

Forms of Caching

Cache Type |What Cached |Where Cached |Latency Managed
(cycles) By

Registers 4-byte word CPU Registers 0 | Compiler

TLB Address On-Chip TLB 0 | Hardware

Translations

SRAM 32-byte block On-Chip L1 1| Hardware

SRAM 32-byte block Off-Chip L2 10 | Hardware

Virtual 4-KB page Main Memory 100 | MMU+OS

Memory

Buffered Files | File Buffer Main Memory 100 | OS

Network File Parts of Files Processor Disk 10,000,000 | AFS Client

Cache

Browser Web Pages Processor Disk 10,000,000 | Browser

Cache

Web Cache Web Pages Server Disks 1,000,000,000 | Akamai

Server
cl ass18. ppt [cs213501]

Page 10

