
Memory Management II:
Dynamic Storage Allocation

Mar 6, 2000

Topics
• Segregated free lists

– Buddy system
• Garbage collection

– Mark and Sweep
– Copying
– Reference counting

class15.ppt

15-213
“The course that gives CMU its Zip!”

CS 213 S’01– 2 –class15.ppt

Basic allocator mechanisms
Sequential fits (implicit or explicit single free list)

• best fit, first fit, or next fit placement
• various splitting and coalescing options

– splitting thresholds

– immediate or deferred coalescing

Segregated free lists
• simple segregated storage -- separate heap for each size class
• segregated fits -- separate linked list for each size class

– buddy systems

CS 213 S’01– 3 –class15.ppt

Segregate Storage
Each size “class” has its own collection of blocks

1-2

3

4

5-8

9-16

• Often have separate collection for every small size (2,3,4,…)
• For larger sizes typically have a collection for each power of 2

CS 213 S’01– 4 –class15.ppt

Simple segregated storage
Separate heap and free list for each size class
No splitting
To allocate a block of size n:

• if free list for size n is not empty,
– allocate first block on list (note, list can be implicit or explicit)

• if free list is empty,
– get a new page

– create new free list from all blocks in page
– allocate first block on list

• constant time

To free a block:
• Add to free list
• If page is empty, return the page for use by another size (optional)

Tradeoffs:
• fast, but can fragment badly

CS 213 S’01– 5 –class15.ppt

Segregated fits
Array of free lists, each one for some size class
To allocate a block of size n:

• search appropriate free list for block of size m > n
• if an appropriate block is found:

– split block and place fragment on appropriate list (optional)
• if no block is found, try next larger class
• repeat until block is found

To free a block:
• coalesce and place on appropriate list (optional)

Tradeoffs
• faster search than sequential fits (i.e., log time for power of two size

classes)
• controls fragmentation of simple segregated storage
• coalescing can increase search times

– deferred coalescing can help

CS 213 S’01– 6 –class15.ppt

Buddy systems

Special case of segregated fits.
• all blocks are power of two sizes

Basic idea:
• Heap is 2m words
• Maintain separate free lists of each size 2k, 0 <= k <= m.
• Requested block sizes are rounded up to nearest power of 2.
• Originally, one free block of size 2m.

CS 213 S’01– 7 –class15.ppt

Buddy systems (cont)

To allocate a block of size 2k:
• Find first available block of size 2j s.t. k <= j <= m.
• if j == k then done.
• otherwise recursively split block until j == k.
• Each remaining half is called a “buddy” and is placed on the

appropriate free list

2m

buddy

buddy

buddy

CS 213 S’01– 8 –class15.ppt

Buddy systems (cont)
To free a block of size 2k

• continue coalescing with buddies while the buddies are free

buddy

buddy

Block to free

buddy

Not free, done

Added to appropriate free list

CS 213 S’01– 9 –class15.ppt

Buddy systems (cont)

Key fact about buddy systems:
• given the address and size of a block, it is easy to compute the

address of its buddy
• e.g., block of size 32 with address xxx...x00000 has buddy
xxx...x10000

Tradeoffs:
• fast search and coalesce
• subject to internal fragmentation

CS 213 S’01– 10 –class15.ppt

Internal fragmentation
Internal fragmentation is wasted space inside allocated

blocks:
• minimum block size larger than requested amount

– e.g., due to minimum free block size, free list overhead
• policy decision not to split blocks

– e.g., buddy system
– Much easier to define and measure than external fragmentation.

CS 213 S’01– 11 –class15.ppt

Implicit Memory Management
Garbage collector

Garbage collection: automatic reclamation of heap-
allocated storage -- application never has to free

Common in functional languages, scripting languages,
and modern object oriented languages:
• Lisp, ML, Java, Perl, Mathematica,

Variants (conservative garbage collectors) exist for C
and C++
• Cannot collect all garbage

void foo() {
int *p = malloc(128);
return; /* p block is now garbage */

}

CS 213 S’01– 12 –class15.ppt

Garbage Collection
How does the memory manager know when memory

can be freed?
• In general we cannot know what is going to be used in the future

since it depends on conditionals
• But we can tell that certain blocks cannot be used if there are no

pointers to them

Need to make certain assumptions about pointers
• Memory manager can distinguish pointers from non-pointers
• All pointers point to the start of a block
• Cannot hide pointers (e.g. by coercing them to an int, and then back

again)

CS 213 S’01– 13 –class15.ppt

Classical GC algorithms
Mark and sweep collection (McCarthy, 1960)

• Does not move blocks (unless you also “compact”)

Reference counting (Collins, 1960)
• Does not move blocks

Copying collection (Minsky, 1963)
• Moves blocks

For more information see Jones and Lin, “Garbage
Collection: Algorithms for Automatic Dynamic
Memory”, John Wiley & Sons, 1996.

CS 213 S’01– 14 –class15.ppt

Memory as a graph
We view memory as a directed graph

• Each block is a node in the graph
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are called

root nodes (e.g. registers, locations on the stack, global variables)

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node.
Non-reachable nodes are garbage (never needed by the application)

CS 213 S’01– 15 –class15.ppt

Assumptions for this lecture
Application

� new(n): returns pointer to new block with all locations cleared
� read(b,i): read location i of block b into register
� write(b,i,v): write v into location i of block b

Each block will have a header word
• addressed as b[-1], for a block b
• Used for different purposes in different collectors

Instructions used by the Garbage Collector
� is_ptr(p): determines whether p is a pointer
� length(b): returns the length of block b, not including the header
� get_roots(): returns all the roots

CS 213 S’01– 16 –class15.ppt

Mark and sweep collecting
Can build on top of malloc/free package

• Allocate using malloc until you “run out of space”

When out of space:
• Use extra “mark bit” in the head of each block
• Mark: Start at roots and set mark bit on all reachable memory
• Sweep: Scan all blocks and free blocks that are not marked

Before mark

root

After mark

After sweep free free

Mark Bit Set

CS 213 S’01– 17 –class15.ppt

Mark and sweep (cont.)

� �� �� � �� � �� � � �

	
 � � 	
�
�

� �� � � � � � � ��� � �� � � ��� � � � � 	 �� 	
 � � � � � 	 � � � �

	
 � �� � �� 	 �� 	
 � � � � � ��� �� � � � �

� � � � � �� 	 � � � � � � � � � � � � � �� � � ! 	 �

 � � � 	#" $ � 	 % � � �� � � � � � � 	& & � � � �� � � � � � � � 	 � �� � �

�� � �� � ' 	(� �

� � ��� � ��

)

Mark using depth-first traversal of the memory graph

Sweep using lengths to find next block

� �� � * � � � � � �� �,+ � �� � � � � �

* � 	 � � � � % � � � � �

	
 �� � �� 	 �� � � � � �

� � � � � � � �� 	 � � � �

� ��� � 	
 � � � � � � � � � � 	 �� � � � � � �

 � � � � � � �

� & " � � � � � �� � � �

)

CS 213 S’01– 18 –class15.ppt

Mark and sweep in C
A C Conservative Collector

� Is_ptr() can determines if a word is a pointer by checking if it
points to an allocated block of memory.

• But, in C pointers can point to the middle of a block.

So how do we find the beginning of the block
Can use balanced tree to keep track of all allocated blocks where the key

is the location
Balanced tree pointers can be stored in head (use two additional words)

head
ptr

head data

left right

size

CS 213 S’01– 19 –class15.ppt

Copying collection
Keep two equal-sized spaces, from-space and to-space
Repeat until application finishes

• Application allocates in one space contiguously until space is full.
• Stop application and copy all reachable blocks to contiguous

locations in the other space.
• Flip the roles of the two spaces and restart application.

Before copy
(from space)

After copy
(to space)

Copy does not necessarily keep the order of the blocks

root

Has the effect or removing all fragments

CS 213 S’01– 20 –class15.ppt

Copying collection (new)

• All new blocks are allocated in WRVSDFH, one after the other

• An extra word is allocated for the header
• The Garbage-Collector starts (flips), when we reach WRS

ptr new (int n) {
if (free+n+1 > top) flip();
newblock = free;
free += (n+1);
for (i=0; i < n+1; i++)

newblock[i] = 0;
return newblock+1;

}

� � � � � � �
 � � � � � �
 � � �� � � � �

CS 213 S’01– 21 –class15.ppt

Copying collection (flip)

�� 	 �
 � 	 � � � �

� * � � � �
 � � �� � � � � + � � � � � � � � � �

� � � " � � � � � � � & � 	�� � �

 � � � " � � � � � � � �

 � � � � 	 � � � � �� �

� " � � � � � � � �

)

� � � � � � �
 � � � � � �
 � � �� � � � �

 � � �� � � � �
 � � � � � �� � � � � � �

reachable

Not reachable

After the first three lines of flip (before the copy).

CS 213 S’01– 22 –class15.ppt

Copying collection (copy)

� �� � � � � � � �� � � �

	
 � � 	
�
�

� �� � � � � � � ��� � � � � � � ��� � � � � 	 �� 	
 � � � � � 	 � � � �

	
 � � '
�

� (� " $ � � � ��� � � � '
�

� (� � � � � � � � 	
 � � � � � ���
 � � * � � � �

� � * "
 � � �& � � � � � � � � � 	 � �
 � � � � � � � � �

� '
�

� (" � � *� � � � � � � � �
 � � * � � � 	 �� � � 	 � � � �

� � * '
�

� (" $ � � � � � � � �
 � � * � � � 	 � � � * � � � �

 � � � & " � � � � � �� � � & � � � � 	 � �� � � � � �
 � � � � � 	 � � � �

 � � � 	#" $ � 	 % � � �� � � � � � � 	& & � � � � � � � � � � � � 	 � �� � � � � �

� � * ' 	(" � � � � � � ' 	(� � � � � � � � � � � � 	 � � � � � � � � � * � � �

� � ��� � � � � *�)

 � � �� � � � �
 � � � � � �� � � � � � �

 � � �� � � � �
 � � � � � �� � � � � � �

CS 213 S’01– 23 –class15.ppt

Reference counting
Basic algorithm

• Keeps count on each block of how many pointers point to the block
• When a count goes to zero, the block can be freed

Data structures
• Can be built on top of an existing explicit allocator

±DOORFDWH�Q���IUHH�S�

• Add an additional header word for the “reference count”

3

• Keeping the count updated requires that the we modify every read and
write (can be optimized out in some cases)

CS 213 S’01– 24 –class15.ppt

Reference counting

� �� � � * � 	 � � � � �

� � * ! � � � � " allocate

� �& � � �

� � * ! � � � � ' $ (" � �

� � ��� � � � � * ! � � � �& � �

)
�� 	 � *� 	 � � � � �� !+ 	 � � 	 + � � � � � �

� � �� � � � � � � ! ' � (� �

	
 � 	
�
�

� �� � � � � � '
�

� (& & �

! ' 	(" ��

)
� � � � � � �� � �� ! + 	 � � 	 � �

� " ! ' � (�

	
 � 	
�
�

� �� � � � � � '
�

� (& & �

� � ��� � � ��

)

Set reference count to one when creating a new block

When reading a value increment its reference counter

When writing decrement the old value and increment the new value

CS 213 S’01– 25 –class15.ppt

Reference counting
Decrement

• if counter decrements to zero then the block can be freed
• when freeing a block, the algorithm must decrement the counters of

everything pointed to by the block -- this might in turn recursively
free more blocks

�� 	 � � � �� � � � � � � � �� � � �

	
 � � 	
�
�

� �� � � � � � � ��� � ��

� '
�

� (
� � �

	
 � � '
�

� (" " $ � �

 � � � 	#" $ � 	 % � � �� � �� � � � 	& & �

� � �� � � � � � � � ' 	(� �

free

� � �

� � �

)

)

CS 213 S’01– 26 –class15.ppt

Reference counting example
Initially

nR

2T 1S

1U

1V

Now consider: write(R,1,NULL)
• This will execute a: decrement(S)

CS 213 S’01– 27 –class15.ppt

Reference counting example

After counter on S is decremented

nR

2T 0S

1U

1V
�� 	 � � � �� � � � � � � � �� � � �

	
 � � 	
�
�

� �� � � � � � � ��� � ��

� '
�

� (
� � �

	
 � � '
�

� (" " $ � �

 � � � 	#" $ � 	 % � � �� � �� � � � 	& & �

� � �� � � � � � � � ' 	(� �

free
� � �

� � �

)

)

CS 213 S’01– 28 –class15.ppt

Reference counting example

nR

1T 0S

1U

1V

After: decrement(S[0])

�� 	 � � � �� � � � � � � � �� � � �

	
 � � 	
�
�

� �� � � � � � � ��� � ��

� '
�

� (
� � �

	
 � � '
�

� (" " $ � �

 � � � 	#" $ � 	 % � � �� � �� � � � 	& & �

� � �� � � � � � � � ' 	(� �

free
� � �

� � �

)

)

CS 213 S’01– 29 –class15.ppt

Reference counting example

nR

1T 0S

0U

0V

After: decrement(S[1])

free

CS 213 S’01– 30 –class15.ppt

Reference counting cyclic
data structures

nR

2S

2T

1U

ZULWH�5���18//�

nR

1S

2T

1U

AfterBefore

CS 213 S’01– 31 –class15.ppt

Garbage Collection Summary
Copying Collection

• Pros: prevents fragmentation, and allocation is very cheap
• Cons: requires twice the space (from and to), and stops allocation to

collect

Mark and Sweep
• Pros: requires little extra memory (assuming low fragmentation) and does

not move data
• Cons: allocation is somewhat slower, and all memory needs to be

scanned when sweeping

Reference Counting
• Pros: requires little extra memory (assuming low fragmentation) and does

not move data
• Cons: reads and writes are more expensive and difficult to deal with

cyclic data structures

Some collectors use a combination (e.g. copying for small objects
and reference counting for large objects)

