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Memory Management I:
Dynamic Storage Allocation

March 1, 2001

Topics
• Explicit memory allocation
• Data structures
• Mechanisms
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Harsh Reality #3
Memory Matters

Memory is not unbounded
• It must be allocated and managed
• Many applications are memory dominated

– Especially those based on complex, graph algorithms

Memory referencing bugs especially pernicious
• Effects are distant in both time and space

Memory performance is not uniform
• Cache and virtual memory effects can greatly affect program 

performance
• Adapting program to characteristics of memory system can lead to

major speed improvements
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Dynamic Storage Allocation

Explicit vs. Implicit Storage Allocator
• Explicit:  application allocates and frees space 

– E.g., malloc and free in C
• Implicit: application allocates, but does not free space

– E.g. garbage collection in Java, ML or Lisp

Allocation
• In both cases the storage allocator provides an abstraction of 

memory as a set of blocks
• Doles out free memory blocks to application

Will discuss explicit storage allocation today

Application

Dynamic Storage Allocator

Heap Memory

CS 213 S’01– 4 –class14.ppt

Process memory image
kernel virtual memory

Memory mapped region for
shared libraries

run-time heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

0

%esp

memory invisible to
user code

the “brk” ptr
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Malloc package
void *malloc(int size)

• if successful:

– returns a pointer to a memory block of at least size bytes

– if � � � �� � �

, returns NULL

• if unsuccessful: returns NULL

void free(void *p)
• returns the block pointed at by p to pool of available memory

� p must come from a previous call to malloc().

Assumptions made in this lecture
• memory is word addressed (each word can hold a pointer)

Allocated block
(4 words)

Free block
(3 words)

Free word

Allocated word
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Allocation example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)
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Constraints
Applications:

• Can issue arbitrary sequence of allocation and free requests
• Free requests must correspond to an allocated block

Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to all allocation requests

– i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

– i.e., can only place allocated blocks in free memory
• Must align blocks so they satisfy all alignment requirements

– usually 8 byte alignment
• Can only manipulate and modify free memory
• Can’t move the allocated blocks once they are allocated

– i.e., compaction is not allowed
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Goals of good malloc/free 
Primary goals

• Good time performance for malloc and free
– Ideally should take constant time (not always possible)

– Should certainly not take linear time in the number of blocks
• Good space usage

– User allocated structures should be large fraction of operating-system 
allocated pages

– Need to avoid fragmentation

Some other goals
• Good locality properties

– structures allocated close in time should be close in space
– “similar” objects should be allocated close in space

• Robust
– can check that free(p1) is on a valid allocated object p1

– can check that memory references are to allocated space
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Fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

oops!

Tendency for free blocks to become smaller over time leading to
wasted space

No general solution assuming we cannot move blocks
We will consider several heuristics
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Implementation issues
• How do we know how much memory to free just given 

a pointer?
• How do we keep track of the free blocks?
• What do we do with the extra space when allocating a 

structure that is smaller than the free block it is 
placed in?

• How do we pick a block to use for allocation -- many 
might fit?

• How do we reinsert freed block into the data structure 
that keeps track of freed blocks?

p1 = malloc(1)

p0

free(p0)
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Knowing how much to free
Standard method

• keep the length of a structure in the word preceeding the structure
– This word is often called the header field

• requires an extra word for every allocated structure

free(p0)

p0 = malloc(4) p0

Block size data

5
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Keeping track of free blocks
• Method 1: implicit list using lengths -- links all blocks

• Method 2: explicit list among the free blocks using 
pointers within the free blocks

• Method 3: segregated free lists
• Different free lists for different size classes

• Method 4: blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

5 4 26

5 4 26
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Method 1: implicit list
Need to identify whether each block is free or allocated

• Can use extra bit
• Bit can be put in the same word as the size if block sizes are always 

multiples of two (mask out low order bit when reading size).

size

1 word

Format of
allocated and
free blocks

data

a = 1: allocated block  
a = 0: free block

size: block size

data: application data
(allocated blocks only)

a
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Implicit list: finding a free block
First fit:

• Search list from beginning, choose first free block that fits

• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

Next fit:
• Like first-fit, but search list from location of end of previous search
• Does a better job of spreading out the free blocks 

Best fit:
• Search the list, choose the free block with the closest size that fits

• Keeps fragments small --- usually helps fragmentation
• Will typically run slower than first-fit

p = start; 
while ((p < end) ||    \\ not passed end

(*p & 1) ||     \\ already allocated
(*p <= len));   \\ too small  
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Implicit list: allocating in a free block
Allocating in a free block - splitting

• Since allocated space might be smaller than free space, we need to 
split the block

void addblock(ptr p, int l) {
int newsize = ((l + 1) >> 1) << 1;  // add 1 and round up
int oldsize = *p & -2;              // mask out low bit
*p = newsize | 1;                   // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
}                                     //   part of block

addblock(p,2);

4 4 26

4 24

p

24
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Implicit list: freeing a block
Simplest implementation:

• Only need to clear allocated flag
void free_block(ptr p) { *p= *p & -2}

• But can lead to “false fragmentation” 

There is enough free space, but the allocator won’t be able to find it

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5)
Oops!
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Implicit list: coalescing
Join with next and/or previous block if they are free

• Coalescing with next block
void free_block(ptr p) {
*p = *p & -2;          // clear allocated flag
next = p + *p;        // find next block
if ((*next & 1) == 0)

*p = *p + *next;    // add to this block if
}                       //    not allocated

• But how do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6
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Implicit list: bidirectional 
Boundary tags [Knuth73]

• replicate size/allocated word at bottom of free blocks
• Allows us to traverse the “list” backwards, but requires extra space

size

1 word

Format of
allocated and
free blocks

data

a = 1: allocated block  
a = 0: free block

size: block size

data: application data
(allocated blocks only)

a

size aboundary tag
(footer)

4 4 4 4 6 46 4

header
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Constant time coalescing

allocated

allocated

allocated

free

free

allocated

free

free

block being
freed

Case 1 Case 2 Case 3 Case 4
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m1 1

Constant time coalescing (case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1
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m1 1

Constant time coalescing (case 2)

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0
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m1 0

Constant time coalescing (case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1
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m1 0

Constant time coalescing (case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0
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Implicit lists: Summary
• Implementation: very simple

• Allocate: linear time worst case

• Free: constant time worst case -- even with coalescing

• Memory usage: will depend on placement policy
• First fit, next fit or best fit

Not used in practice for malloc/free because of linear 
time allocate.  Used in many special purpose 
applications.
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Keeping track of free blocks
• Method 1: implicit list using lengths -- links all blocks

• Method 2: explicit list among the free blocks using 
pointers within the free blocks

• Method 3: segregated free lists
• Different free lists for different size classes

• Method 4: blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within 

each free block, and the length used as a key

5 4 26

5 4 26
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Linked list of free blocks

Use data space for link pointers
• Typically doubly linked
• Still need header and footer for coalescing

• It is important to realize that links are not necessarily in the same 
order as the blocks

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C
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Linked list of free blocks
Allocation

• Splice block out of the free list
• Split the block
• If remaining space, put space back onto the free list

Free
• Determine if coalescing with neighboring block

– If not coalescing, add block to free list
– If coalescing with next block, need to splice next block out of the free 

list, and add self into it
– If coalescing with previous block, only need to modify lengths of 

previous block
– If coalescing with both previous and next, then need to splice the next 

block out of the free list (but not add self)
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Linked list of free blocks
Comparison to implicit list:

• Allocate is linear time in number of free blocks instead of total 
blocks  -- much faster allocates when most of the memory is full 

• Slightly more complicated allocate and free since needs to splice 
blocks in and out of the list

• Some extra space for the links (4 words needed for each block)

Main use of linked lists is in conjunction with 
segregated free lists
• Keep multiple linked lists of different size classes, or possibly for 

different types of objects
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For more information

D. Knuth, “The Art of Computer Programming, Second 
Edition”, Addison Wesley, 1973
• the classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey 
and Critical Review”, Proc. 1995 Int’l Workshop on 
Memory Management, Kinross, Scotland, Sept, 1995.
• comprehensive survey
• $classdir/doc/dsa.ps


