
Page 1

Memory Management I:
Dynamic Storage Allocation

March 1, 2001

Topics
• Explicit memory allocation
• Data structures
• Mechanisms

class14.ppt

15-213

CS 213 S’01– 2 –class14.ppt

Harsh Reality #3
Memory Matters

Memory is not unbounded
• It must be allocated and managed
• Many applications are memory dominated

– Especially those based on complex, graph algorithms

Memory referencing bugs especially pernicious
• Effects are distant in both time and space

Memory performance is not uniform
• Cache and virtual memory effects can greatly affect program 

performance
• Adapting program to characteristics of memory system can lead to

major speed improvements

CS 213 S’01– 3 –class14.ppt

Dynamic Storage Allocation

Explicit vs. Implicit Storage Allocator
• Explicit:  application allocates and frees space 

– E.g., malloc and free in C
• Implicit: application allocates, but does not free space

– E.g. garbage collection in Java, ML or Lisp

Allocation
• In both cases the storage allocator provides an abstraction of 

memory as a set of blocks
• Doles out free memory blocks to application

Will discuss explicit storage allocation today

Application

Dynamic Storage Allocator

Heap Memory

CS 213 S’01– 4 –class14.ppt

Process memory image
kernel virtual memory

Memory mapped region for
shared libraries

run-time heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

0

%esp

memory invisible to
user code

the “brk” ptr



Page 2

CS 213 S’01– 5 –class14.ppt

Malloc package
void *malloc(int size)

• if successful:

– returns a pointer to a memory block of at least size bytes

– if � � � �� � �

, returns NULL

• if unsuccessful: returns NULL

void free(void *p)
• returns the block pointed at by p to pool of available memory

� p must come from a previous call to malloc().

Assumptions made in this lecture
• memory is word addressed (each word can hold a pointer)

Allocated block
(4 words)

Free block
(3 words)

Free word

Allocated word

CS 213 S’01– 6 –class14.ppt

Allocation example

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

CS 213 S’01– 7 –class14.ppt

Constraints
Applications:

• Can issue arbitrary sequence of allocation and free requests
• Free requests must correspond to an allocated block

Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to all allocation requests

– i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

– i.e., can only place allocated blocks in free memory
• Must align blocks so they satisfy all alignment requirements

– usually 8 byte alignment
• Can only manipulate and modify free memory
• Can’t move the allocated blocks once they are allocated

– i.e., compaction is not allowed

CS 213 S’01– 8 –class14.ppt

Goals of good malloc/free 
Primary goals

• Good time performance for malloc and free
– Ideally should take constant time (not always possible)

– Should certainly not take linear time in the number of blocks
• Good space usage

– User allocated structures should be large fraction of operating-system 
allocated pages

– Need to avoid fragmentation

Some other goals
• Good locality properties

– structures allocated close in time should be close in space
– “similar” objects should be allocated close in space

• Robust
– can check that free(p1) is on a valid allocated object p1

– can check that memory references are to allocated space



Page 3

CS 213 S’01– 9 –class14.ppt

Fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6)

oops!

Tendency for free blocks to become smaller over time leading to
wasted space

No general solution assuming we cannot move blocks
We will consider several heuristics

CS 213 S’01– 10 –class14.ppt

Implementation issues
• How do we know how much memory to free just given 

a pointer?
• How do we keep track of the free blocks?
• What do we do with the extra space when allocating a 

structure that is smaller than the free block it is 
placed in?

• How do we pick a block to use for allocation -- many 
might fit?

• How do we reinsert freed block into the data structure 
that keeps track of freed blocks?

p1 = malloc(1)

p0

free(p0)

CS 213 S’01– 11 –class14.ppt

Knowing how much to free
Standard method

• keep the length of a structure in the word preceeding the structure
– This word is often called the header field

• requires an extra word for every allocated structure

free(p0)

p0 = malloc(4) p0

Block size data

5

CS 213 S’01– 12 –class14.ppt

Keeping track of free blocks
• Method 1: implicit list using lengths -- links all blocks

• Method 2: explicit list among the free blocks using 
pointers within the free blocks

• Method 3: segregated free lists
• Different free lists for different size classes

• Method 4: blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each 

free block, and the length used as a key

5 4 26

5 4 26



Page 4

CS 213 S’01– 13 –class14.ppt

Method 1: implicit list
Need to identify whether each block is free or allocated

• Can use extra bit
• Bit can be put in the same word as the size if block sizes are always 

multiples of two (mask out low order bit when reading size).

size

1 word

Format of
allocated and
free blocks

data

a = 1: allocated block  
a = 0: free block

size: block size

data: application data
(allocated blocks only)

a

CS 213 S’01– 14 –class14.ppt

Implicit list: finding a free block
First fit:

• Search list from beginning, choose first free block that fits

• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

Next fit:
• Like first-fit, but search list from location of end of previous search
• Does a better job of spreading out the free blocks 

Best fit:
• Search the list, choose the free block with the closest size that fits

• Keeps fragments small --- usually helps fragmentation
• Will typically run slower than first-fit

p = start; 
while ((p < end) ||    \\ not passed end

(*p & 1) ||     \\ already allocated
(*p <= len));   \\ too small  

CS 213 S’01– 15 –class14.ppt

Implicit list: allocating in a free block
Allocating in a free block - splitting

• Since allocated space might be smaller than free space, we need to 
split the block

void addblock(ptr p, int l) {
int newsize = ((l + 1) >> 1) << 1;  // add 1 and round up
int oldsize = *p & -2;              // mask out low bit
*p = newsize | 1;                   // set new length
if (newsize < oldsize)

*(p+newsize) = oldsize - newsize; // set length in remaining
}                                     //   part of block

addblock(p,2);

4 4 26

4 24

p

24

CS 213 S’01– 16 –class14.ppt

Implicit list: freeing a block
Simplest implementation:

• Only need to clear allocated flag
void free_block(ptr p) { *p= *p & -2}

• But can lead to “false fragmentation” 

There is enough free space, but the allocator won’t be able to find it

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5)
Oops!



Page 5

CS 213 S’01– 17 –class14.ppt

Implicit list: coalescing
Join with next and/or previous block if they are free

• Coalescing with next block
void free_block(ptr p) {
*p = *p & -2;          // clear allocated flag
next = p + *p;        // find next block
if ((*next & 1) == 0)

*p = *p + *next;    // add to this block if
}                       //    not allocated

• But how do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6

CS 213 S’01– 18 –class14.ppt

Implicit list: bidirectional 
Boundary tags [Knuth73]

• replicate size/allocated word at bottom of free blocks
• Allows us to traverse the “list” backwards, but requires extra space

size

1 word

Format of
allocated and
free blocks

data

a = 1: allocated block  
a = 0: free block

size: block size

data: application data
(allocated blocks only)

a

size aboundary tag
(footer)

4 4 4 4 6 46 4

header

CS 213 S’01– 19 –class14.ppt

Constant time coalescing

allocated

allocated

allocated

free

free

allocated

free

free

block being
freed

Case 1 Case 2 Case 3 Case 4

CS 213 S’01– 20 –class14.ppt

m1 1

Constant time coalescing (case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1



Page 6

CS 213 S’01– 21 –class14.ppt

m1 1

Constant time coalescing (case 2)

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0

CS 213 S’01– 22 –class14.ppt

m1 0

Constant time coalescing (case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

CS 213 S’01– 23 –class14.ppt

m1 0

Constant time coalescing (case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

CS 213 S’01– 24 –class14.ppt

Implicit lists: Summary
• Implementation: very simple

• Allocate: linear time worst case

• Free: constant time worst case -- even with coalescing

• Memory usage: will depend on placement policy
• First fit, next fit or best fit

Not used in practice for malloc/free because of linear 
time allocate.  Used in many special purpose 
applications.



Page 7

CS 213 S’01– 25 –class14.ppt

Keeping track of free blocks
• Method 1: implicit list using lengths -- links all blocks

• Method 2: explicit list among the free blocks using 
pointers within the free blocks

• Method 3: segregated free lists
• Different free lists for different size classes

• Method 4: blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within 

each free block, and the length used as a key

5 4 26

5 4 26

CS 213 S’01– 26 –class14.ppt

Linked list of free blocks

Use data space for link pointers
• Typically doubly linked
• Still need header and footer for coalescing

• It is important to realize that links are not necessarily in the same 
order as the blocks

A B C

4 4 4 4 66 44 4 4

Forward links

Back links

A B

C

CS 213 S’01– 27 –class14.ppt

Linked list of free blocks
Allocation

• Splice block out of the free list
• Split the block
• If remaining space, put space back onto the free list

Free
• Determine if coalescing with neighboring block

– If not coalescing, add block to free list
– If coalescing with next block, need to splice next block out of the free 

list, and add self into it
– If coalescing with previous block, only need to modify lengths of 

previous block
– If coalescing with both previous and next, then need to splice the next 

block out of the free list (but not add self)

CS 213 S’01– 28 –class14.ppt

Linked list of free blocks
Comparison to implicit list:

• Allocate is linear time in number of free blocks instead of total 
blocks  -- much faster allocates when most of the memory is full 

• Slightly more complicated allocate and free since needs to splice 
blocks in and out of the list

• Some extra space for the links (4 words needed for each block)

Main use of linked lists is in conjunction with 
segregated free lists
• Keep multiple linked lists of different size classes, or possibly for 

different types of objects



Page 8

CS 213 S’01– 29 –class14.ppt

For more information

D. Knuth, “The Art of Computer Programming, Second 
Edition”, Addison Wesley, 1973
• the classic reference on dynamic storage allocation

Wilson et al, “Dynamic Storage Allocation: A Survey 
and Critical Review”, Proc. 1995 Int’l Workshop on 
Memory Management, Kinross, Scotland, Sept, 1995.
• comprehensive survey
• $classdir/doc/dsa.ps


