
Concurrency I: Threads
 Nov 9, 2000

Topics
• Thread concept
• Posix threads (Pthreads) interface
• Linux Pthreads implementation
• Concurrent execution
• Sharing data

class22. ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’00– 2 –class22. ppt

Traditional view of a process

shared libraries

run-time heap

0

read/write data

Process = process context + code, data, and stack

Program context:
 Data registers
 Condition co des
 Stack pointer (SP)
 Program co unter (PC)
Kernel context:
 VM structures
 Open files
 Signal h andlers
 brk pointer

Code, data, and stac k

read-only code/data

stack
SP

PC

brk

Process context

CS 213 F’00– 3 –class22. ppt

Modern view of a process

shared libraries

run-time heap

0

read/write data

Process = thread + code, data, and kernel context

Thread context:
 Data registers
 Condition co des
 Stack pointer (SP)
 Program co unter (PC)

 Code and Data

read-only code/data

stack
SP

PC

brk

Thread (main thread)

Kernel context:
 VM structures
 Open files
 Signal h andlers
 brk pointer

CS 213 F’00– 4 –class22. ppt

A process with multiple threads

shared libraries

run-time heap

0

read/write dataThread 1 context:
 Data registers
 Condition co des
 SP1
 PC1

 Shared code and da ta

read-only code/data

stack 1

Thread 1 (main thread)

Kernel context:
 VM structures
 Open files
 Signal h andlers
 brk pointer

Multiple threads can be associ ated with a process
• Each thread has its own logical control flow (sequ ence of PC values)
• Each thread shares th e same code, data , and kernel contex t
• Each thread has its own thread id (tid)

Thread 2 context:
 Data registers
 Condition co des
 SP2
 PC2

stack 2

Thread 2 (peer thread)

CS 213 F’00– 5 –class22. ppt

Logical view of threads
Threads associated with a proce ss form a pool of peers.

• unlike processes which form a tree hierarchy

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associate d with process foo

T2
T4

T5 T3

shared code, data
and kernel context

CS 213 F’00– 6 –class22. ppt

Concurrent thread execution
Two threads run concurrently (are concurrent) if their

logical flows overlap in time.
Otherwise, they are sequential.

Examples:
• Concurrent: A & B, A&C
• Sequential: B & C

Time

Thread A Thread B Thread C

CS 213 F’00– 7 –class22. ppt

Threads vs processes
How threads and processes are si milar

• Each has its own logic al control flow.
• Each can run concurren tly.
• Each is context switc hed.

How threads and processes are di fferent
• Threads share code and data, processe s (typically) do not.
• Threads are somewhat less expensive than processes.

– process control (creating and reaping) is twice as expensive as thread
control.

– Linux/Pentium III numbers:

» 20K cycles to create and reap a process.
» 10K cycles to create and reap a thread.

CS 213 F’00– 8 –class22. ppt

Threads are a unifying abstraction for
exceptional control flow

Exception handler
• A handler can be vie wed as a thread
• Waits for a "signa l" from CPU
• Upon receipt, execu tes some code, the n waits for next "signa l"

Process
• A process is a thread + shared code, data , and kernel contex t.

Signal handler
• A signal handler can be viewed as a threa d
• Waits for a signal from the kernel or another proc ess
• Upon receipt, execute s some code, then waits for next signal.

CS 213 F’00– 9 –class22. ppt

Posix threads (Pthreads) interface
Pthreads : Standard interface for ~60 functions that

manipulate threads from C programs.
• Creating and reaping threa ds.

– pthread _create

– pthread _join

• Determining your thread ID
– pthread _self

• Terminating threads
– pthread _cancel

– pthread _exit

– exit() [terminates all th reads] , ret [terminates current thread]
• Synchronizing acce ss to shared variabl es

– pthread _mutex _init

– pthread _mutex _[un]lock

– pthread _cond_ init

– pthread _cond_[timed]wait

CS 213 F’00– 10 –class22. ppt

The Pthreads "hello, world" program

/*
 * hello.c - Pthreads "hello, world" program
 */
#include < ics.h>

void *thread(void * vargp);

int main() {
 pthread _t tid ;

 Pthread _create(& tid, NULL, thread, NULL);
 Pthread _join(tid, NULL);
 exit(0);
}

/* thread routine */
void *thread(void * vargp) {
 printf ("Hello, world!\n");
 return NULL;
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

return value
(void **p)

CS 213 F’00– 11 –class22. ppt

Execution of “hello, world”

main thread peer thread

create peer thread

print output

terminate thread via ret
wait for peer thread
to terminate

exit() terminates main thread and any
peer threads

CS 213 F’00– 12 –class22. ppt

Unix vs Posix error handling
Unix-style error handling (Unix syscalls)

• if error: return -1 and set errno variable to error code .
• if OK: return useful result as value >= 0.

Posix -style error handling (newer Posix functions)
• if error: return nonzero error code , zero if OK
• useful results are pa ssed back in an argument.

if ((pid = wait(NULL)) < 0) {
 perror ("wait");
 exit(0);
}

if ((rc = pthread _join(tid , &retvalp)) != 0) {
 printf (”pthread _create: %s\n", strerror(rc));
 exit(0);
}

CS 213 F’00– 13 –class22. ppt

Suggested error handling macros
Error checking crucial, but c luttered. Use these to

simplify your error checking:

/*
 * macro for posix -style error handling
 */
#define posix_error(code, msg) do {\
 printf ("%s: %s\n", msg , strerror (code));\
 exit(0);\
} while (0)

/*
 * macro for unix -style error handling
 */
#define unix_error(msg) do {\
 printf ("%s: %s\n", msg , strerror (errno));\
 exit(0);\
} while (0)

CS 213 F’00– 14 –class22. ppt

Pthreads wrappers
We advocate Steven’s convention o f providing

wrappers for each system-level function call.
• wrapper is denoted by c apitalizing first letter o f function name.
• wrapper has identical i nterface as the origina l function.
• each wrapper does app ropriate unix or posix style error checking .
• wrapper typically return noth ing.
• declutters code without compromisin g safety.

/*
 * wrapper function for pthread_join
 */
void Pthread_join(pthread _t tid, void **thread_return) {
 int rc = pthread _join(tid, thread_return);
 if (rc != 0)
 posix _error(rc, "Pthread _join");
}

CS 213 F’00– 15 –class22. ppt

Basic thread control: create a thread

Creates a new peer thread
• tidp : thread id
• attrp : thread attributes (usua lly NULL)
• routine: thread routine
• argp : input parameters to routine

Akin to fork()
• but without the confusing “ call once return twice” semantics.
• peer thread has loca l stack variables , but shares all globa l variables.

int pthread _create(pthread _t * tidp , pthread _attr _t * attrp ,
 void *(*routine)(vo id *), void * argp);

CS 213 F’00– 16 –class22. ppt

Basic thread control: join

Waits for a specific peer thread to termina te, and then
reaps it.
• tid : thread ID of thread to wait for.
• thread_return : object returned by pee r thread via ret stmt

Akin to wait and wait_pid but unlike wait ...
• Any thread can reap a ny other thread (not just c hildren)
• Must wait for a *specific* thread

– no way to wait for *any* thread.
– perceived by some as a flaw in the Pthreads design

int pthread _join(pthread _t tid , void ** thread_return);

CS 213 F’00– 17 –class22. ppt

Linux implementation of Pthreads
Linux implements threads in an elega nt way:

• Threads are just proc esses that share the same kernel conte xt.
• fork() : creates a child process with a new kernel context
• clone() : creates a chil d process that shares some or all of the

parent’s kernel conte xt.

int __clone(int (* fn)(void * arg),void *child_s tack,

 int flags, void * arg);

Creates a new process and executes functi on fn with argument arg
in that process usin g the stack space pointed to by child_stack .
Returns pid of new process.

flags determine the degre e of kernel context s haring: e.g.,
CLONE_VM: share virtual address s pace
CLONE_FS: share file system information

 CLONE_FILES: share open file d escriptors

CS 213 F’00– 18 –class22. ppt

hellopid .c
The following routine will show us the process

hierarchy of a Linux thread pool:

#include < ics.h>
void *thread(void * vargp);

int main() {
 pthread _t tid ;
 printf ("Hello from main thread! tid :%ld pid :%d\n",

 pthread _self(), getpid());
 Pthread _create(& tid, NULL, thread, NULL);
 Pthread _join(tid, NULL);
 exit(0);
}

void *thread(void * vargp) {
 printf ("Hello from child thread! tid:%ld pid :%d ppid :%d\n",

 pthread _self(), getpid(), getppid ());
 return NULL;
}

CS 213 F’00– 19 –class22. ppt

Linux process hierarchy for threads

bass> hellopid
Hello from main thread! tid :1024 pid :6024
Hello from child thread! tid:1025 pid :6026 ppid :6025

thread mgr
pid =6025

main
pid =6024

child
pid =6026

other peer
thread

other peer
thread

Thread manager sup ports thread
abstraction using si gnals:

• exit(): kills all threads, re gardless
where it is called from

• slow system calls such as sleep()
or read() block only the calling
thread.

CS 213 F’00– 20 –class22. ppt

beep.c: Performing concurrent tasks
/*
 * beeps until the user hits a key
 */
#include < ics.h>
void *thread(void * vargp);

/* shared by both threads */
char shared = '\0';

int main() {
 pthread _t tid ;
 Pthread _create(& tid, NULL,
 thread, NULL);
 while (shared == '\0') {
 printf ("BEEP\n");
 sleep(1);
 }
 Pthread _join(tid, NULL);
 printf ("DONE\n");
 exit(0);
}

/* thread routine */
void *thread(void * vargp) {
 shared = getchar ();
 return NULL;
}

CS 213 F’00– 21 –class22. ppt

badcnt.c: Sharing data between threads
/* bad sharing */
#include < ics.h>
#define NITERS 1000
void *count(void * arg);

struct {
 int counter;
} shared;

int main() {
 pthread _t tid1, tid2;
 Pthread _create(&tid1, NULL,
 count, NULL);
 Pthread _create(&tid2, NULL,
 count, NULL);
 if (shared.counter != NITERS*2)
 printf ("BOOM! counter=%d\n",
 shared.counter);
 else
 printf ("OK counter=%d\n",
 shared.counter);
}

/* thread routine */
void *count(void * arg) {
 int i, val;

 for (i=0; i<NITERS; i++) {
 val = shared.counter;
 printf ("%d: %d\n",
 (int)pthread _self(),
 val);
 shared.counter = val + 1;
 }
 return NULL;
}

Key point:
“struct shared” is vis ible to
all threads.

“i” and “ val” are visible only
to the count thread.

CS 213 F’00– 22 –class22. ppt

Running badcnt.c

1025: 0
1025: 1
1025: 2
...
1025: 997
1025: 998
1025: 999
2050: 969
2050: 970
2050: 971
...
2050: 1966
2050: 1967
2050: 1968
BOOM! counter=1969

1025: 0
1025: 1
1025: 2
...
1025: 997
1025: 998
1025: 999
2050: 712
2050: 713
2050: 714
...
2050: 1709
2050: 1710
2050: 1711
BOOM! counter=1712

1025: 0
1025: 1
1025: 2
...
1025: 997
1025: 998
1025: 999
2050: 1000
2050: 1001
2050: 1002
...
2050: 1997
2050: 1998
2050: 1999
OK counter=2000

Output of run 1 Output of run 2 Output of run 3

So what’s the deal?
We must synchronize concurrent acces ses to shared thread d ata

(the topic of our next le cture)

