
Dynamic Memory Allocation
November 2, 2000

Topics
• Simple explicit allocators
• Data structures
• Mechanisms
• Policies

class20.ppt

15-213
“The course that gives CMU its Zip!”

CS 213 F’00– 2 –class20.ppt

Harsh Reality #3
Memory Matters

Memory is not unbounded
• It must be allocate d and managed
• Many applications are memory dominated

– Especially those based on complex, graph algorithms

Memory referencing bugs especiall y pernicious
• Effects are distant in both time and space

Memory performance is not uniform
• Cache and virtual me mory effects can grea tly affect program

performance
• Adapting program to charac teristics of memory s ystem can lead to

major speed improve ments

CS 213 F’00– 3 –class20.ppt

Dynamic Memory Allocation

Explicit vs. Implicit Memory Allocator
• Explicit: applicatio n allocates and free s space

– E.g., malloc and free in C

• Implicit: applicatio n allocates, but doe s not free space
– E.g. garbage collection in Java, ML or Lisp

Allocation
• In both cases the memory allocator provides an abstracti on of

memory as a set of blocks
• Doles out free memory blocks to applicatio n

Will discuss simple ex plicit memory allocation today

Application

Dynamic Memory Allocator

Heap Memory

CS 213 F’00– 4 –class20.ppt

Process memory image
kernel virtual memory

Memory mapped region for
shared libraries

run-time heap (via malloc)

program text (.text)

initialized data (.data)

uninitialized data (.bss)

stack

0

%esp

memory invisibl e to
 user code

the “ brk” ptr

Allocators request
additional heap
memory
from the operating
system
using the sbrk()
function.

CS 213 F’00– 5 –class20.ppt

Malloc package
#include <stdlib.h>

void *malloc(size_t size)
• if successful:

– returns a pointer to a memory block of at least size bytes, aligned to
8-byte boundary.

– if size==0 , returns NULL

• if unsuccessful: returns NULL

void free(void *p)
• returns the block pointe d at by p to pool of available memory
• p must come from a previous call to malloc or realloc.

void *realloc(void *p, size_t size)
• changes size o f block p and returns ptr to new block.
• contents of new block unchanged up to min o f old and new size.

CS 213 F’00– 6 –class20.ppt

Malloc example
void foo(int n, int m) {
 int i, *p;

 /* allocate a block of n ints */
 if ((p = (int *) malloc(n * sizeof(int))) == NULL) {
 perror("malloc");
 exit(0);
 }
 for (i=0; i<n; i++)
 p[i] = i;

 /* add m bytes to end of p block */
 if ((p = (int *) realloc(p, (n+m) * sizeof(int))) == NULL) {
 perror("realloc");
 exit(0);
 }
 for (i=n; i < n+m; i++)
 p[i] = i;

 /* print new array */
 for (i=0; i<n+m; i++)
 printf("%d\n", p[i]);

 free(p); /* return p to available memory pool */
}

CS 213 F’00– 7 –class20.ppt

Assumptions

Assumptions made in this lecture
• memory is word address ed (each word can hold a pointer)

Allocated block
(4 words)

Free block
(3 words)

Free word

Allocated word

CS 213 F’00– 8 –class20.ppt

Allocation examples

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(2)

CS 213 F’00– 9 –class20.ppt

Constraints
Applications:

• Can issue arbitrary se quence of allocation and free requests
• Free requests must c orrespond to an alloca ted block

Allocators
• Can’t control number or siz e of allocated bloc ks
• Must respond immediate ly to all allocation requests

– i.e., can’t reorder or buffer requests
• Must allocate blocks from free memory

– i.e., can only place allocated blocks in free memory
• Must align blocks so they satisfy all al ignment requirements

– usually 8 byte alignment
• Can only manipulate and modify free mem ory
• Can’t move the alloc ated blocks once they are allocated

– i.e., compaction is not allowed

CS 213 F’00– 10 –class20.ppt

Goals of good malloc/free
Primary goals

• Good time performance for malloc and free
– Ideally should take constant time (not always possible)

– Should certainly not take linear time in the number of blocks
• Good space utilizati on

– User allocated structures should be large fraction of the heap.

– want to minimize “fragmentation”.

Some other goals
• Good locality properties

– structures allocated close in time should be close in space
– “similar” objects should be allocated close in space

• Robust
– can check that free(p1) is on a valid allocated object p1

– can check that memory references are to allocated space

CS 213 F’00– 11 –class20.ppt

Performance goals: throughput
Given some sequence of malloc and free requests:

• R0, R1, ..., Rk, ... , Rn-1

Want to maximize throughput and peak memory
utilization.
• These goals are o ften conflicting

Throughput:
• Number of completed req uests per unit time
• Example:

– 5,000 malloc calls and 5,000 free calls in 10 seconds
– throughput is 1,000 operations/second.

CS 213 F’00– 12 –class20.ppt

Performance goals:
peak memory utilization

Given some sequence of malloc and free requests:
• R0, R1, ..., Rk, ... , Rn-1

Def: aggregate payload Pk:
• malloc(p) results in a block with a payload of p bytes..
• After request Rk has completed, the aggregate payload Pk is the sum of

currently allocated p ayloads.

Def: current heap size is denoted by Hk
• Note that Hk is monotonicall y nondecreasing

Def: peak memory utilization:
• After k requests, peak memory uti lization is:

– Uk = (maxi<k Pi) / Hk

CS 213 F’00– 13 –class20.ppt

Internal Fragmentation
Poor memory utilization caused by fragmentation .

• Comes in two forms: internal and external fragmenta tion

Internal fragmentation
• For some block, inte rnal fragmentation is the difference between the

block size and the payload size.

• Caused by overhead of maintaining heap data structures, padding
for alignment purposes , or explicit policy d ecisions (e.g., not to split
the block).

• Depends only on the pattern of previous reques ts, and thus is eas y
to measure.

payload
Internal
fragmentation

block

Internal
fragmentation

CS 213 F’00– 14 –class20.ppt

External fragmentation

p1 = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free(p2)

p4 = malloc(6) oops!

Occurs when there is enou gh aggregate heap me mory, but no single
free block is large enough

External fragmentation depends on the pattern of future requests, and
thus is difficult to measure.

CS 213 F’00– 15 –class20.ppt

Implementation issues
• How do we know how much memory to free just given

a pointer?
• How do we keep track of the free bl ocks?
• What do we do with the extra space when allocating a

structure that is smaller than the free bloc k it is
placed in?

• How do we pick a block to use for allocation -- many
might fit?

• How do we reinsert freed block?

p1 = malloc(1)

p0

free(p0)

CS 213 F’00– 16 –class20.ppt

Knowing how much to free
Standard method

• keep the length of a structure in the word preceding the structure
– This word is often called the header field or header

• requires an extra word for every all ocated structure

free(p0)

p0 = malloc(4) p0

Block size data

5

CS 213 F’00– 17 –class20.ppt

Keeping track of free blocks
• Method 1 : implicit list using len gths -- links all blocks

• Method 2 : explicit list among the free b locks using
pointers within the free blocks

• Method 3 : segregated free lists
• Different free lists for different size classes

• Method 4 : blocks sorted by size
• Can use a balanced tree (e.g. Red-Black tree) with pointers within each

free block, and the length used as a key

5 4 26

5 4 26

CS 213 F’00– 18 –class20.ppt

Method 1: implicit list

Need to identify whether each block is free or allocated
• Can use extra bit
• Bit can be put in the s ame word as the size if block sizes a re always

multiples of two (mask out low order bit when reading s ize).

size

1 word

Format of
allocated and
free blocks

payload

a = 1: allocated block
a = 0: free block

size: block size

payload: application d ata
(allocated blocks only)

a

optional
padding

CS 213 F’00– 19 –class20.ppt

Implicit list: finding a free block
First fit:

• Search list from beginning, choose first free block that fits

• Can take linear time in total number of blocks (allocated and free)
• In practice it can cause “splinters” at beginning of list

Next fit:
• Like first-fit, but search list from location of end of previous search
• Research suggests that fragmentation is worse

Best fit:
• Search the list, choose the free block with the closest size that fits

• Keeps fragments small --- usually helps fragmentation
• Will typically run slower than first-fit

p = start;
while ((p < end) || \\ not passed end
 (*p & 1) || \\ already allocated
 (*p <= len)); \\ too small

CS 213 F’00– 20 –class20.ppt

Implicit list: allocating in a free block
Allocating in a free block - splitting

• Since allocated s pace might be sma ller than free space, we might
want to split the block

void addblock(ptr p, int len) {
 int newsize = ((len + 1) >> 1) << 1; // add 1 and round up
 int oldsize = *p & -2; // mask out low bit
 *p = newsize | 1; // set new length
 if (newsize < oldsize)
 *(p+newsize) = oldsize - newsize; // set length in remaining
} // part of block

addblock(p, 2);

4 4 26

4 24

p

24

CS 213 F’00– 21 –class20.ppt

Implicit list: freeing a block
Simplest implementation:

• Only need to clear al located flag
 void free_block(ptr p) { *p= *p & -2}

• But can lead to “fal se fragmentation”

There is enough free space, but the allocator won’t be able to find i t

4 24 2

free(p) p

4 4 2

4

4 2

malloc(5)
Oops!

CS 213 F’00– 22 –class20.ppt

Implicit list: coalescing
Join with next and/or previous block if they are free

• Coalescing with next bl ock
 void free_block(ptr p) {
 *p = *p & -2; // clear allocated flag
 next = p + *p; // find next block
 if ((*next & 1) == 0)
 *p = *p + *next; // add to this block if
 } // not allocated

• But how do we coalesce with previous block?

4 24 2

free(p) p

4 4 2

4

6

CS 213 F’00– 23 –class20.ppt

Implicit list: bidirectional
Boundary tags [Knuth73]

• replicate size/a llocated word at bottom of free blocks
• Allows us to traverse the “list” backwards, bu t requires extra space
• Important and general technique!

size

1 word

Format of
allocated and
free blocks

payload and
padding

a = 1: allocated block
a = 0: free block

size: block size

payload: application d ata
(allocated blocks only)

a

size aboundary tag
 (footer)

4 4 4 4 6 46 4

header

CS 213 F’00– 24 –class20.ppt

Constant time coalescing

allocated

allocated

allocated

free

free

allocated

free

free

block being
freed

Case 1 Case 2 Case 3 Case 4

CS 213 F’00– 25 –class20.ppt

m1 1

Constant time coalescing (case 1)

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

CS 213 F’00– 26 –class20.ppt

m1 1

Constant time coalescing (case 2)

m1 1

n+m2 0

n+m2 0

m1 1

m1 1

n 1

n 1

m2 0

m2 0

CS 213 F’00– 27 –class20.ppt

m1 0

Constant time coalescing (case 3)

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

CS 213 F’00– 28 –class20.ppt

m1 0

Constant time coalescing (case 4)

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

CS 213 F’00– 29 –class20.ppt

Summary of key allocator policies
Placement policy:

• first fit, next fit, best fi t, etc.
• trades off lower throughput for le ss fragmentation

– Interesting observation: segregated free lists (next lecture) approximate
a best fit placement policy without having the search entire free list.

Splitting policy:
• When do we go ahead and split free blocks ?
• How much internal fragmenta tion are we willing to tolerate ?

Coalescing policy:
• immediate coale scing: coalesce a djacent blocks ea ch time free is

called
• Deferred coalescing: try to improve performance of free by deferring

coalescing until n eeded. e.g.,
– coalesce as you scan the free list for malloc.
– coalesce when the amount of external fragmentation reaches some

threshold.

CS 213 F’00– 30 –class20.ppt

Implicit lists: Summary
• Implementation: very simple

• Allocate: linear time worst case

• Free: constant time worst case -- even with coalescing

• Memory usage: will depend on placement policy
• First fit, next fit or best fit

Not used in practice for malloc /free because of linear
time allocate. Used in many special purpose
applications.

However, the concepts of splitting and boundary tag
coalescing are general to all allocators .

