
Bits and Bytes
Aug. 31, 2000

Topics
• Why bits?
• Representing information as bits

– Binary/Hexadecimal
– Byte representations

» numbers
» characters and strings
» Instructions

• Bit-level manipulatio ns
– Boolean algebra
– Expressing in C
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Why Don’t Computers Use Base 10?
Base 10 Number Representation

• That’s why fingers are k nown as “digits”
• Natural representation for fin ancial transactions

– Floating point number c annot exactly repres ent $1.20
• Even carries through in scientific notation

– 1.5213 X 104

Implementing Electronically
• Hard to store

– ENIAC (First electronic compu ter) used 10 vacuum tubes / digit
• Hard to transmit

– Need high precision to encode 10 signal levels on single wire
• Messy to implement d igital logic functions

– Addition, multiplication , etc.
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Binary Representations
Base 2 Number Representation

• Represent 15213 10 as 111011011011012

• Represent 1.20 10 as 1.0011001100110011[0011]…2

• Represent 1.5213 X 104  as 1.11011011011012 X 213

Electronic Implementation
• Easy to store with bistable  elements
• Reliably transmitted o n noisy and inaccu rate wires

• Straightforward implementation of arithmetic functions

0.0V

0.5V

2.8V

3.3V

0 1 0
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Byte-Oriented Memory Organization
Programs Refer to Virtual Addresses

• Conceptually very la rge array of bytes
• Actually implemente d with hierarchy of different m emory types

– SRAM, DRAM, disk
– Only allocate for regions actually used by program

• In Unix and Windows NT, a ddress space private to particular
“process”
– Program being execute d
– Program can clobber its own data, but not that of othe rs

Compiler + Run-Time System Control Allocation
• Where different program obj ects should be stored
• Multiple mechanisms : static, stack, and heap
• In any case, al l allocation within singl e virtual address spa ce
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Encoding Byte Values
Byte = 8 bits

• Binary 000000002 to 111111112

• Decimal: 010 to 25510

• Hexadecimal 0016 to FF16

– Base 16 number repres entation
– Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
– Write FA1D37B 16 in C as 0xFA1D37B

» Or   0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Hex
Decim

al

Binary
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Machine Words
Machine Has “Word Size”

• Nominal size of inte ger-valued data
– Including addresse s

• Most current machines a re 32 bits (4 bytes)
– Limits addresses to 4GB
– Becoming too small for memory-intensive a pplications

• High-end systems a re 64 bits (8 bytes)
– Potentially address ≈ 1.8 X 1019 bytes

• Machines support multipl e data formats
– Fractions or multiples of word size
– Always integral number of bytes
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Word-Oriented Memory Organization

Addresses Specify Byte
Locations
• Address of first byte in word
• Addresses of succe ssive words

differ by 4 (32-bit) or 8 (64-bit)

0000

0001

0002

0003

0004

0005

0006

0007

0008

0009

0010

0011

32-bit
Words

Bytes Addr.

0012

0013

0014

0015

64-bit
Words

Addr
=

0000

Addr
=

0008

Addr
=

0000

Addr
=

0004

Addr
=

0008

Addr
=

0012
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Data Representations
Sizes of C Objects (in Bytes)

C Data Type Compaq Alpha Typical 32-bit Intel IA32
int 4 4 4
long int 8 4 4
char 1 1 1
short 2 2 2
float 4 4 4
double 8 8 8
long double 8 8 10/12
char * 8 4 4

» Or any other pointer
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Byte Ordering
Issue

• How should bytes within mul ti-byte word be ordered in me mory

Conventions
• Alphas, PC’s are “Little Endian ” machines

– Least significant b yte has lowest address
• Sun’s, Mac’s are “Big Endian ” machines

– Least significant b yte has highest add ress

Example
• Variable x has 4-byte represen tation 0x01234567
• Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian
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Examining Data Representations
Code to Print Byte Representation of Data

• Casting pointer to unsigned char * creates byte
array

typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
  int i;
  for (i = 0; i < len; i++)
    printf("0x%p\t0x%.2x\n",
           start+i, start[i]);
  printf("\n");
}

Printf directives:
%p: Print pointer
%x: Print Hexadecimal
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show_bytes Execution Example

int a = 15213;

printf("int a = 15213;\n");

show_bytes((pointer) &a, sizeof(int));

Result:

int  a = 15213;

0x11ffffcb8 0x6d

0x11ffffcb9 0x3b

0x11ffffcba 0x00

0x11ffffcbb 0x00
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Representing Integers
int A = 15213;

int B = -15213;

long int C = 15213;

Decimal: 15213

Binary:  0011 1011 0110 1 101

Hex:    3    B    6    D

6D

3B

00

00

Alpha A

3B

6D

00

00

Sun A

93

C4

FF

FF

Alpha B

C4

93

FF

FF

Sun B

00

00

00

00

6D

3B

00

00

Alpha C

3B

6D

00

00

Sun C

Two’s complement representation
(Covered next lecture)
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Representing Pointers
int B = -15213;

int *P = &B;

Alpha Address

Hex:    1    F    F    F    F    F    C    A    0

Binary:   0001 1111 1111 1111 1111 1111 1100 1010 0000

01

00

00

00

A0

FC

FF

FF

Alpha P

FB

2C

EF

FF

Sun P

Sun Address

Hex:    E    F    F    F    F    B    2    C
Binary:   1110 1111 1111 1111 1111 1011 0010 1100

Different compilers & mac hines assign differe nt locations to objects

CS 213 F’00– 14 –class02.ppt

Representing Floats

Float F = 15213.0;

IEEE Single Precision Flo ating Point Representation

Hex:    4    6    6    D    B    4    0    0
Binary:   0100 0110 0110 1101 1011 0100 0000 0000

15213:            1110 1101 1011 01

Not same as intege r representation, but cons istent across machi nes

00

B4

6D

46

Alpha F

B4

00

46

6D

Sun F
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char S[6] = "15213";

Representing Strings
Strings in C

• Represented by array o f characters
• Each character enco ded in ASCII format

– Standard 7-bit encoding of character set
– Other encodings exist, but uncommon
– Character “0” has code 0x30

» Digit i  has code 0x30+i
• String should be null-term inated

– Final character = 0

Compatibility
• Byte ordering not an iss ue

– Data are single byte quantities
• Text files generall y platform independent

– Except for different conv entions of line
termination character!

Alpha S Sun S

32

31

31

35

33

00

32

31

31

35

33

00
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Machine-Level Code Representation
Encode Program as Sequence of I nstructions

• Each simple operati on
– Arithmetic operation
– Read or write memory
– Conditional branch

• Instructions encoded as bytes
– Alpha’s, Sun’s, Mac’s u se 4 byte instructions

» Reduced Instruction Set Computer (RISC)
– PC’s use variable le ngth instructions

» Complex Instruction Set Computer (CISC)
• Different instruction types and encodings for diffe rent machines

– Most code not binary com patible

Programs are Byte Sequences Too!
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Representing Instructions

int sum(int x, int y)

{

   return x+y;

}

Different machines us e totally different instruc tions and encodings

00

00

30

42

Alpha sum

01

80

FA

6B

E0

08

81

C3

Sun sum

90

02

00

09

• For this example, Alp ha & Sun
use two 4-byte instructio ns
– Use differing numbers of

instructions in other ca ses
• PC uses 7 instructions with

lengths 1, 2, and 3 bytes
– Same for NT and for Linux
– NT / Linux not binary

compatible

E5

8B

55

89

PC sum

45

0C

03

45

08

89

EC

5D

C3
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Boolean Algebra
Developed by George Boole in 19th Century

• Algebraic representation of logic
– Encode “True” as 1 and “False” as 0

And
• A&B = 1 when both A=1 and B=1

& 0 1
0 0 0
1 0 1

~
0 1
1 0

Not
• ~A = 1 when A=0

Or
• A|B = 1 when either A=1 or B=1

| 0 1
0 0 1
1 1 1

^ 0 1
0 0 1
1 1 0

Exclusive-Or ( Xor)
• A^B = 1 when either A=1 or B=1 ,

but not both
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A

~A

~B

B

Connection when
   A&~B | ~A&B
  = A^B

Application of Boolean Algebra
Applied to Digital Systems by Claude Shannon

• 1937 MIT Master’s Thesi s
• Reason about networks of relay switches

– Encode closed switch as 1, open switch as 0
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Properties of & and | Operations
Integer Arithmetic

• 〈Z, +, *, –, 0, 1〉 forms a “ring”

• Addition is “sum” operation
• Multiplication is “produc t” operation
• – is additive inv erse
• 0 is identity for sum
• 1 is identity for produc t

Boolean Algebra
• 〈{0,1}, |, &, ~, 0, 1〉 forms a “Boolean algebra”

• Or is “sum” operation
• And is “product” ope ration
• ~ is “compleme nt” operation (not additi ve inverse)
• 0 is identity for sum
• 1 is identity for produc t
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Properties of Rings & Boolean Algebras
Boolean Algebra Integer Ring

• Commutativity
A | B    =  B | A A + B  =  B + A
A & B    =  B & A A * B  =  B * A

• Associativity
(A |  B)  | C    =  A | (B | C) (A + B) + C  =  A + (B + C)
(A & B) & C    =  A & (B & C) (A * B) * C  =  A * (B * C)

• Product distributes over s um
A & (B | C)  =  (A & B) | (A & C) A * (B + C)  =  A * B + B * C

• Sum and product identiti es
A | 0  =  A A + 0  =  A
A & 1  =  A A * 1  = A

• Zero is product annihil ator
A & 0  =  0 A * 0  =  0

• Cancellation of nega tion
~ (~ A) =  A – (– A)  =  A
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Ring ≠ Boolean Algebra
Boolean Algebra Integer Ring
• Boolean: Sum distributes ove r product

A | (B & C)  =  (A | B) & (A | C) A + (B * C)  ≠  (A + B) * (B + C)
• Boolean: Idempotency

A | A  =  A A  + A ≠ A
– “A is true” or “A is true ” = “A is true”

A & A  =  A A  * A ≠ A
• Boolean: Absorption

A | (A & B)  =  A A + (A * B) ≠ A
– “A is true” or “A is true and B is true” = “A i s true”

A & (A | B)  =  A A * (A + B) ≠ A
• Boolean: Laws of Complements

A | ~A  =  1 A  + –A ≠ 1
– “A is true” or “A is fa lse”

• Ring: Every element ha s additive inverse
A | ~A ≠ 0 A + –A = 0
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Properties of & and ^
Boolean Ring

• 〈{0,1}, ^, &,  Ι, 0, 1〉
• Identical to integers mod 2
•  Ι is identity operatio n: Ι (A) = A

A ^ A = 0

Property Boolean Ring
• Commutative sum A ^ B  =  B ^ A
• Commutative product A & B  =  B & A
• Associative sum (A ^ B) ^ C  =  A ^ (B ^ C)
• Associative product (A & B) & C  =  A & (B & C)
• Prod. over sum A & (B ^ C)  =  (A & B) ^ (B & C)
• 0 is sum identity A ^ 0  =  A
• 1 is prod. identity A & 1  =  A
• 0 is product annihila tor A & 0 = 0
• Additive inverse A ^ A  =  0
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Relations Between Operations
DeMorgan’s  Laws

• Express & in terms of |, and vice-versa
A & B  =  ~(~A | ~B)

» A and B are true if and onl y if neither A nor B is false
A | B  =  ~(~A & ~B)

» A or B are true if and only i f A and B are not both false

Exclusive-Or using Inclus ive Or
A ^ B  =  (~A & B) | (A & ~B)

» Exactly one of A and B is true
A ^ B  =  (A | B) & ~(A & B)

» Either A is true, or B is true, b ut not both
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General Boolean Algebras
Operate on Bit Vectors

• Operations applied bitwise

Representation of Sets
• Width w bit vector represents s ubsets of {0, …, w–1}
• aj = 1 if j  ∈ A

–01101001 { 0, 3, 5, 6 }
–01010101 { 0, 2, 4, 6 }

• & Intersection 01000001 { 0, 6 }
• |  Union 01111101 { 0, 2, 3, 4, 5, 6 }
• ^ Symmetric difference 00111100 { 2, 3, 4, 5 }
• ~ Complement 10101010 { 1, 3, 5, 7 }

  01101001
& 01010101
  01000001

  01101001
| 01010101
  01111101

  01101001
^ 01010101
  00111100

  
~ 01010101
  10101010
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Bit-Level Operations in C
Operations &,  |,  ~,  ^ Availa ble in C

• Apply to any “integra l” data type
–long,  int,  short,  char

• View arguments as bit v ectors
• Arguments applied bit-wise

Examples (Char data type)
• ~0x41 -->  0xBE

~010000012 --> 101111102
• ~0x00 -->  0xFF

~000000002 --> 111111112

• 0x69 & 0x55  -->  0x41

011010012 & 010101012 --> 010000012
• 0x69 | 0x55  -->  0x7D

011010012 | 010101012 --> 011111012
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Contrast: Logic Operations in C
Contrast to Logical Operators

• &&, ||, !
– View 0 as “False”
– Anything nonzero as “ True”
– Always return 0 or 1

Examples (char data type)
• !0x41  -->  0x00

• !0x00  -->  0x01

• !!0x41 -->  0x01

• 0x69 && 0x55  -->  0x01

• 0x69 || 0x55  -->  0x01
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Shift Operations
Left Shift: x << y

• Shift bit-vector x left y positions
– Throw away extra bits on le ft
– Fill with 0’s on right

Right Shift: x >> y
• Shift bit-vector x right y positions

– Throw away extra bits on righ t
• Logical shift

– Fill with 0’s on left
• Arithmetic shift

– Replicate most sign ificant bit on
right

– Useful with two’s compleme nt
integer representation

01100010Argument x

00010 000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010 000<< 3

00101000Log. >> 2

11101000Arith. >> 2



CS 213 F’00– 29 –class02.ppt

Cool Stuff with Xor

void funny(int *x, int *y)

{

   *x = *x ^ *y;    /* #1 */

   *y = *x ^ *y;    /* #2 */

   *x = *x ^ *y;    /* #3 */

}

Step *x *y

Begin A B
1 A^B B
2 A^B (A^B)^B = A^(B^B) =

A^0 = A
3 (A^B)^A = (B^A)^A =

B^(A^A) = B^0 = B
A

End B A

• Bitwise Xor  is form of
addition

• With extra property that
every value is i ts own
additive inverse
 A ^ A = 0


