15-213

Memory System Performance

March 21, 2000

Topics

• Impact of cache parameters
• Impact of memory reference patterns
 - memory mountain range
 - matrix multiply
Basic Cache Organization

Address space \((N = 2^n\) bytes) \quad Cache \((C = S \times E \times B\) bytes\)

Address \((n = t + s + b\) bits\)

\[\begin{array}{ccc}
\text{Valid bit} & \text{tag} & \text{data} \\
1 \text{ bit} & t \text{ bits} & B = 2^b \text{ bytes (line size)}
\end{array}\]

\(E\) lines/set

\(S = 2^s\) sets

Cache line (cache block)
Multi-Level Caches

Options: separate data and instruction caches, or a unified cache

Processor

- TLB
- L1 Dcache
- L1 Icache

L2 Cache

Memory

disk

size: 200 B 8-64 KB 1-4MB SRAM 128 MB DRAM 9 GB
speed: 2 ns 2 ns 4 ns 60 ns 8 ms
$/Mbyte: $100/MB $1.50/MB $0.05/MB
line size: 8 B 32 B 32 B 8 KB

larger, slower, cheaper

larger line size, higher associativity, more likely to write back
Cache Performance Metrics

Miss Rate
- fraction of memory references not found in cache (misses/references)
 - Typical numbers:
 3-10% for L1
 can be quite small (e.g., < 1%) for L2, depending on size, etc.

Hit Time
- time to deliver a line in the cache to the processor (includes time to determine whether the line is in the cache)
 - Typical numbers:
 1 clock cycle for L1
 3-8 clock cycles for L2

Miss Penalty
- additional time required because of a miss
 - Typically 25-100 cycles for main memory
Impact of Cache and Line Size

Cache Size

- impact on miss rate:
 - larger is better

- impact on hit time:
 - smaller is faster

Line Size

- impact on miss rate:
 - big lines can help exploit spatial locality (if it exists)
 - however, for a given cache size, bigger lines means that there are fewer of them (which can hurt the miss rate)

- impact on miss penalty:
 - given a fixed amount of bandwidth, larger lines means longer transfer times (and hence larger miss penalties)
Impact of Associativity

- Direct mapped, set associative, or fully associative?

Total Cache Size (tags+data):
 - Higher associativity requires more tag bits, LRU state machine bits
 - Additional read/write logic, multiplexers (MUXs)

Miss Rate:
 - Higher associativity (generally) decreases miss rate

Hit Time:
 - Higher associativity increases hit time
 - direct mapped is the fastest

Miss Penalty:
 - Higher associativity may require additional delays to select victim
 - in practice, this decision is often overlapped with other parts of the miss
Impact of Write Strategy

• Write through or write back?

Advantages of Write Through:
• Read misses are cheaper.
 - Why?
• Simpler to implement.
 - uses a write buffer to pipeline writes

Advantages of Write Back:
• Reduced traffic to memory
 - especially if bus used to connect multiple processors or I/O devices
• Individual writes performed at the processor rate
Qualitative Cache Performance Model

Compulsory (aka “Cold”) Misses:
- first access to a memory line (which is not in the cache already)
 - since lines are only brought into the cache on demand, this is guaranteed to be a cache miss
- changing the cache size or configuration does not help

Capacity Misses:
- active portion of memory exceeds the cache size
- the only thing that really helps is increasing the cache size

Conflict Misses:
- active portion of address space fits in cache, but too many lines map to the same cache entry
- increased associativity and better replacement policies can potentially help
Measuring Memory Bandwidth

```c
int data[MAXSIZE];
int test(int size, int stride)
{
    int result = 0;
    int wsize = size/sizeof(int);
    for (i = 0; i < wsize; i+= stride)
        result += data[i];
    return result;
}
```

Stride (words)

Size (bytes)
Measuring Memory Bandwidth (cont.)

Measurement
- Time repeated calls to test
 - If size sufficiently small, then can hold array in cache

Characteristics of Computation
- Stresses read bandwidth of system
- Increasing stride yields decreased spatial locality
 - On average will get stride*4/B accesses / cache block
- Increasing size increases size of “working set”
DEC Alpha 21164
466 MHz
8 KB (L1)
96 KB (L2)
2 M (L3)

L1 Resident
L2 Resident
L3 Resident
Main Memory Resident

Stride Data Set
L1 Resident
L2 Resident
L3 Resident
Main Memory Resident

MB/s
500
400
300
200
100
0

s1
s3
s5
s7
s9
s11
s13
s15
16m
8m
4m
2m
1m
512k
256k
128k
64k
32k
16k
8k
4k
2k
1k
0.5k
Effects Seen in Mountain Range

Cache Capacity
 • See sudden drops as increase working set size

Cache Block Effects
 • Performance degrades as increase stride
 - Less spatial locality
 • Levels off
 - When reach single access per line
Alpha Cache Sizes

- MB/s for stride = 16

Ranges

- .5k - 8k: Running in L1 (High overhead for small data set)
- 16k - 64k: Running in L2.
- 128k: Indistinct cutoff (Since cache is 96KB)
- 256k - 2m: Running in L3.
- 4m - 16m: Running in main memory
Alpha Line Size Effects

Observed Phenomenon
- As double stride, decrease accesses/block by 2
- Until reaches point where just 1 access / block
- Line size at transition from downward slope to horizontal line
 - Sometimes indistinct
Alpha Line Sizes

Measurements

8k Entire array L1 resident. Effectively flat (except for overhead)
32k Shows that L1 line size = 32B
1024k Shows that L2 line size = 32B
16m L3 line size = 64?
Xeon Memory Mountain Range

Pentium III Xeon
550 MHz
16 KB (L1)
512 KB (L2)

MB/s

Stride

Data Set

Main Memory Resident

L1 Resident

L2 Resident
Xeon Cache Sizes

- MB/s for stride = 16

Ranges

- 0.5k - 16k: Running in L1. (Overhead at high end)
- 32k - 256k: Running in L2.
- 512k: Running in main memory (but L2 supposed to be 512K!)
- 1m - 16m: Running in main memory
Xeon Line Sizes

Measurements

4k Entire array L1 resident. Effectively flat (except for overhead)
256k Shows that L1 line size = 32B
16m Shows that L2 line size = 32B
Interactions Between Program & Cache

Major Cache Effects to Consider

• Total cache size
 - Try to keep heavily used data in cache closest to processor
• Line size
 - Exploit spatial locality

Example Application

• Multiply N x N matrices
• $O(N^3)$ total operations
• Accesses
 - N reads per source element
 - N values summed per destination
 » but may be able to hold in register

```c
/* ijk */
for (i=0; i<n; i++) {
  for (j=0; j<n; j++) {
    sum = 0.0;
    for (k=0; k<n; k++)
      sum += a[i][k] * b[k][j];
    c[i][j] = sum;
  }
}
```

Variable `sum` held in register
Matrix Mult. Performance: Sparc20

- As matrices grow in size, they eventually exceed cache capacity
- Different loop orderings give different performance
 - cache effects
 - whether or not we can accumulate partial sums in registers
Miss Rate Analysis for Matrix Multiply

Assume:
- Line size = 32B (big enough for 4 64-bit words)
- Matrix dimension (N) is very large
 - Approximate 1/N as 0.0
- Cache is not even big enough to hold multiple rows

Analysis Method:
- Look at access pattern of inner loop

```
  A
  \downarrow^\ i
\quad - \ k \\

  B
  \downarrow^\ j
\quad - \ k \\

  C
  \downarrow^\ i
\quad - \ j \\
```
Layout of Arrays in Memory

C arrays allocated in row-major order
- each row in contiguous memory locations

Stepping through columns in one row:
for (i = 0; i < N; i++)
 sum += a[0][i];
- accesses successive elements
- if line size (B) > 8 bytes, exploit spatial locality
 - compulsory miss rate = 8 bytes / B

Stepping through rows in one column:
for (i = 0; i < n; i++)
 sum += a[i][0];
- accesses distant elements
- no spatial locality!
 - compulsory miss rate = 1 (i.e. 100%)
Matrix Multiplication (ijk)

```c
/* ijk */
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

<table>
<thead>
<tr>
<th>Misses per Inner Loop Iteration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>0.25</td>
</tr>
</tbody>
</table>

Inner loop:
- (i,*): Row-wise Misses
- (*,j): Column-wise Misses
- (i,j): Fixed Misses

Misses per Inner Loop Iteration:
- A: 0.25
- B: 1.0
- C: 0.0
Matrix Multiplication (jik)

```c
/* jik */
for (j=0; j<n; j++) {
    for (i=0; i<n; i++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
<td>1.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kij)

```c
/* kij */
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Inner loop:

- Fixed
- Row-wise

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (ikj)

```c
/* ikj */
for (i=0; i<n; i++) {
    for (k=0; k<n; k++) {
        r = a[i][k];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

Inner loop:
- Fixed
- Row-wise
- Row-wise

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.0</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Matrix Multiplication (jki)

```c
/* jki */
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {
 for (j=0; j<n; j++) {
 r = b[k][j];
 for (i=0; i<n; i++)
 c[i][j] += a[i][k] * r;
 }
}

Misses per Inner Loop Iteration:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Summary of Matrix Multiplication

ijk (\& jik):
- 2 loads, 0 stores
- misses/iter = 1.25

```c
for (i=0; i<n; i++) {
    for (j=0; j<n; j++) {
        sum = 0.0;
        for (k=0; k<n; k++)
            sum += a[i][k] * b[k][j];
        c[i][j] = sum;
    }
}
```

```
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = a[i][k];
        for (i=0; i<n; i++)
            c[i][j] += r * b[k][j];
    }
}
```

```
for (k=0; k<n; k++) {
    for (i=0; i<n; i++) {
        r = a[i][k] * b[k][j];
        for (j=0; j<n; j++)
            c[i][j] += r * b[k][j];
    }
}
```

kij (\& ikj):
- 2 loads, 1 store
- misses/iter = 0.5

jki (\& kji):
- 2 loads, 1 store
- misses/iter = 2.0


```c
for (j=0; j<n; j++) {
    for (k=0; k<n; k++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```

```c
for (k=0; k<n; k++) {
    for (j=0; j<n; j++) {
        r = b[k][j];
        for (i=0; i<n; i++)
            c[i][j] += a[i][k] * r;
    }
}
```
Matrix Mult. Performance: DEC5000

Matrix size (n) vs. mflops (d.p.)

- ikj
- kij
- ijk
- jik
- jki
- kji

(misses/iter = 0.5)
(misses/iter = 1.25)
(misses/iter = 2.0)
Matrix Mult. Performance: Sparc20

Multiple columns of B fit in cache

(matrix size (n))

mflops (d.p.)

50 75 100 125 150 175 200

(matrix size (n))

ikj
kich
ijk
jik
jki
kji

(misses/iter = 0.5)

(misses/iter = 1.25)

(misses/iter = 2.0)
Matrix Mult. Performance: Alpha 21164

Too big for L1 Cache Too big for L2 Cache

(misses/iter = 0.5)
(misses/iter = 1.25)
(misses/iter = 2.0)
Matrix Mult.: Pentium III Xeon

Matrix Mult.: Pentium III Xeon

Matrix Size (n)

MFlops (d.p.)

ijk

ikj

jik

jki

kij

kji

(misses/iter = 0.5 or 1.25)

(misses/iter = 2.0)

Blocked Matrix Multiplication

- “Block” (in this context) does not mean “cache block”
 - instead, it means a sub-block within the matrix

Example: \(N = 8; \) sub-block size = 4

\[
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
= \begin{bmatrix}
C_{11} & C_{12} \\
C_{21} & C_{22}
\end{bmatrix}
\]

Key idea: Sub-blocks (i.e., \(A_{xy}\)) can be treated just like scalars.

\[
\begin{align*}
C_{11} &= A_{11}B_{11} + A_{12}B_{21} \\
C_{12} &= A_{11}B_{12} + A_{12}B_{22} \\
C_{21} &= A_{21}B_{11} + A_{22}B_{21} \\
C_{22} &= A_{21}B_{12} + A_{22}B_{22}
\end{align*}
\]
Blocked Matrix Multiply (bijk)

for (jj=0; jj<n; jj+=bsize) {
 for (i=0; i<n; i++)
 for (j=jj; j < min(jj+bsize,n); j++)
 c[i][j] = 0.0;
 for (kk=0; kk<n; kk+=bsize) {
 for (i=0; i<n; i++) {
 for (j=jj; j < min(jj+bsize,n); j++) {
 sum = 0.0
 for (k=kk; k < min(kk+bsize,n); k++) {
 sum += a[i][k] * b[k][j];
 }
 c[i][j] += sum;
 }
 }
 }
}
Blocked Matrix Multiply Analysis

- Innermost loop pair multiplies a $1 \times \text{bsize}$ sliver of A by a $\text{bsize} \times \text{bsize}$ block of B and accumulates into $1 \times \text{bsize}$ sliver of C
- Loop over i steps through n row slivers of A & C, using same B

```c
for (i=0; i<n; i++) {
    for (j=jj; j < min(jj+bsize,n); j++) {
        sum = 0.0
        for (k=kk; k < min(kk+bsize,n); k++) {
            sum += a[i][k] * b[k][j];
        }
        c[i][j] += sum;
    }
}
```

- Innermost Loop Pair

- Row sliver accessed bsize times
- Block reused n times in succession
- Update successive elements of sliver
Blocked Matrix Mult. Perf: DEC5000

- bijk
- bikj
- ikj
- ijk

Matrix size (n)

MFLOPS (d.p.)

50 75 100 125 150 175 200
Blocked Matrix Mult. Perf: Sparc20

![Graph showing mflops vs. matrix size (n) for different multiplications (bij, bikj, ikj, ijk).]
Blocked Matrix Mult. Perf: Alpha 21164

The graph shows the performance of different matrix multiplication algorithms (bijk, bikj, ijk, ikj) plotted against matrix size (n). The mflops (d.p.) values are plotted on the y-axis, with matrix size (n) on the x-axis. The graph indicates varying performance across different matrix sizes for each algorithm configuration.