15-213
“The Class That Gives CMU Its Zip!”

Bits and Bytes
Jan. 20, 2000

Topics
• Why bits?
• Representing information as bits
 – Binary/Hexadecimal
 – Byte representations
 » numbers
 » characters and strings
 » Instructions
• Bit-level manipulations
 – Boolean algebra
 – Expressing in C
Why Don’t Computers Use Base 10?

Base 10 Number Representation
- That’s why fingers are known as “digits”
- Natural representation for financial transactions
 - Floating point number cannot exactly represent $1.20
- Even carries through in scientific notation
 - 1.5213×10^4

Implementing Electronically
- Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
- Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
- Messy to implement digital logic functions
 - Addition, multiplication, etc.
Binary Representations

Base 2 Number Representation

- Represent 15213_{10} as 11101101101101_{2}
- Represent 1.20_{10} as $1.0011001100110011[0011]..._{2}$
- Represent 1.5213×10^4 as $1.1101101101101_{2} \times 2^{13}$

Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires

- Straightforward implementation of arithmetic functions
Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses
- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
 - Only allocate for regions actually used by program
- In Unix and Windows NT, address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation
- Where different program objects should be stored
- Multiple mechanisms: static, stack, and heap
- In any case, all allocation within single virtual address space
Encoding Byte Values

Byte = 8 bits

- Binary: 00000000_2 to 11111111_2
- Decimal: 0_{10} to 255_{10}
- Hexadecimal: 00_{16} to FF_{16}
 - Base 16 number representation
 - Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 - Write FA1D37B$_{16}$ in C as 0xFA1D37B
 » Or 0xFA1D37B

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Machine Words

Machine Has “Word Size”

• Nominal size of integer-valued data
 – Including addresses

• Most current machines are 32 bits (4 bytes)
 – Limits addresses to 4GB
 – Becoming too small for memory-intensive applications

• High-end systems are 64 bits (8 bytes)
 – Potentially address $\approx 1.8 \times 10^{19}$ bytes

• Machines support multiple data formats
 – Fractions or multiples of word size
 – Always integral number of bytes
Word-Oriented Memory Organization

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Compaq Alpha</th>
<th>Typical 32-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long int</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>char *</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

» Or any other pointer
Byte Ordering

Issue
- How should bytes within multi-byte word be ordered in memory

Conventions
- Alphas, PC’s are “Little Endian” machines
 - Least significant byte has lowest address
- Sun’s, Mac’s are “Big Endian” machines
 - Least significant byte has highest address

Example
- Variable \(x \) has 4-byte representation 0x1234567
- Address given by \&x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01</td>
<td>23</td>
<td>45</td>
<td>67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100</th>
<th>0x101</th>
<th>0x102</th>
<th>0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67</td>
<td>45</td>
<td>23</td>
<td>01</td>
</tr>
</tbody>
</table>
Examining Data Representations

Code to Print Byte Representation of Data

- Cast pointer to unsigned char * creates byte array

```
typedef unsigned char *pointer;

void show_bytes(pointer start, int len)
{
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%.2x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:

- %p: Print pointer
- %x: Print Hexadecimal
Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result:

<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x11ffffcbb</td>
<td>0x00</td>
</tr>
<tr>
<td>0x11ffffcbba</td>
<td>0x00</td>
</tr>
<tr>
<td>0x11ffffcb9</td>
<td>0x3b</td>
</tr>
<tr>
<td>0x11ffffcb8</td>
<td>0x6d</td>
</tr>
</tbody>
</table>
Representing Integers

```
int A = 15213;
int B = -15213;
long int C = 15213;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>15213</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>0011 1011 0110 1101</td>
</tr>
<tr>
<td>Hex</td>
<td>3 B 6 D</td>
</tr>
</tbody>
</table>

Two’s complement representation (Covered next lecture)
Representing Pointers

```
int B = -15213;
int *P = &B;
```

Alpha Address

<table>
<thead>
<tr>
<th>Hex</th>
<th>1 F F F F F F F C A 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>0001 1111 1111 1111 1111 1111 1100 1010 0000</td>
</tr>
</tbody>
</table>

Sun Address

<table>
<thead>
<tr>
<th>Hex</th>
<th>E F F F F F B 2 C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>1110 1111 1111 1111 1111 1111 1011 0010 1100</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects
Representing Floats

Float \(F = 15213.0; \)

IEEE Single Precision Floating Point Representation

<table>
<thead>
<tr>
<th>Hex</th>
<th>4 6 6 D B 4 0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>0100 0110 0110 1101 1011 0100 0000 0000</td>
</tr>
<tr>
<td>15213:</td>
<td>1110 1101 1011 01</td>
</tr>
</tbody>
</table>

Not same as integer representation, but consistent across machines
Representing Strings

Strings in C

- Represented by array of characters
- Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Other encodings exist, but uncommon
 - Character “0” has code 0×30
 » Digit i has code $0\times30+i$
- String should be null-terminated
 - Final character = 0

Compatibility

- Byte ordering not an issue
 - Data are single byte quantities
- Text files generally platform independent
 - Except for different conventions of line termination character!

char s[6] = "15213";
Machine-Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch

- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 » Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 » Complex Instruction Set Computer (CISC)

- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
Representing Instructions

```c
int sum(int x, int y)
{
    return x+y;
}
```

- For this example, Alpha & Sun use two 4-byte instructions
 - Use differing numbers of instructions in other cases
- PC uses 7 instructions with lengths 1, 2, and 3 bytes
 - Same for NT and for Linux
 - NT / Linux not binary compatible

Different machines use totally different instructions and encodings
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And

- $A \& B = 1$ when both $A=1$ and $B=1$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

- $A|B = 1$ when either $A=1$ or $B=1$

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not

- $\sim A = 1$ when $A=0$

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

- $A^\wedge B = 1$ when either $A=1$ or $B=1$, but not both

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when
A&~B | ~A&B = A^B
Properties of & and | Operations

Integer Arithmetic
• \(\langle \mathbb{Z}, +, *, -, 0, 1 \rangle \) forms a “ring”
• Addition is “sum” operation
• Multiplication is “product” operation
• \(-\) is additive inverse
• 0 is identity for sum
• 1 is identity for product

Boolean Algebra
• \(\langle \{0,1\}, |, &, ~, 0, 1 \rangle \) forms a “Boolean algebra”
• Or is “sum” operation
• And is “product” operation
• ~ is “complement” operation (not additive inverse)
• 0 is identity for sum
• 1 is identity for product
Properties of Rings & Boolean Algebras

Boolean Algebra

- Commutativity
 - \(A \lor B = B \lor A \)
 - \(A \land B = B \land A \)

- Associativity
 - \(A \lor (B \lor C) = (A \lor B) \lor C \)
 - \(A \land (B \land C) = (A \land B) \land C \)

- Product distributes over sum
 - \(A \land (B \lor C) = (A \land B) \lor (A \land C) \)

- Sum and product identities
 - \(A \lor 0 = A \)
 - \(A \land 1 = A \)

- Zero is product annihilator
 - \(A \land 0 = 0 \)

- Cancellation of negation
 - \(\sim (\sim A) = A \)
Ring ≠ Boolean Algebra

Boolean Algebra

- Boolean: *Sum distributes over product*
 \[A \mid (B \& C) = (A \mid B) \& (A \mid C) \]
- Boolean: *Idempotency*
 \[A \mid A = A \]
 - “A is true” or “A is true” = “A is true”
 \[A \& A = A \]
- Boolean: *Absorption*
 \[A \mid (A \& B) = A \]
 - “A is true” or “A is true and B is true” = “A is true”
 \[A \& (A \mid B) = A \]
- Boolean: *Laws of Complements*
 \[A \mid \neg A = 1 \]
 - “A is true” or “A is false”
 \[A \mid \neg A \neq 0 \]

Integer Ring

- A + (B * C) ≠ (A + B) * (B + C)
- A + A ≠ A
- A * A ≠ A
- A + (A * B) ≠ A
- A * (A + B) ≠ A
- A + −A ≠ 1
- A + −A = 0
Properties of \& and ^

Boolean Ring

- \(<\{0, 1\}, ^, \&, I, 0, 1\>
- Identical to integers mod 2
- \(I\) is identity operation: \(I(A) = A\)

 \[A^\& A = 0\]

<table>
<thead>
<tr>
<th>Property</th>
<th>Boolean Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutative sum</td>
<td>(A^& B = B^& A)</td>
</tr>
<tr>
<td>Commutative product</td>
<td>(A & B = B & A)</td>
</tr>
<tr>
<td>Associative sum</td>
<td>((A^& B)^& C = A^& (B^& C))</td>
</tr>
<tr>
<td>Associative product</td>
<td>((A & B) & C = A & (B & C))</td>
</tr>
<tr>
<td>Prod. over sum</td>
<td>(A & (B^& C) = (A & B)^& (B & C))</td>
</tr>
<tr>
<td>0 is sum identity</td>
<td>(A^& 0 = A)</td>
</tr>
<tr>
<td>1 is prod. identity</td>
<td>(A & 1 = A)</td>
</tr>
<tr>
<td>0 is product annihilator</td>
<td>(A & 0 = 0)</td>
</tr>
<tr>
<td>Additive inverse</td>
<td>(A^& A = 0)</td>
</tr>
</tbody>
</table>
Relations Between Operations

DeMorgan’s Laws
 • Express & in terms of |, and vice-versa
 A & B = ~(~A | ~B)
 » A and B are true if and only if neither A nor B is false
 A | B = ~(~A & ~B)
 » A or B are true if and only if A and B are not both false

Exclusive-Or using Inclusive Or
 A ^ B = (~A & B) | (A & ~B)
 » Exactly one of A and B is true
 A ^ B = (A | B) & ~(A & B)
 » Either A is true, or B is true, but not both
General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

\[
\begin{align*}
01101001 & \quad 01101001 & \quad 01101001 \\
& \quad 01010101 & \quad 01010101 & \quad ^{01010101} \\
01000001 & \quad 01111101 & \quad 00111100 & \quad 10101010 \\
\end{align*}
\]

Representation of Sets

- Width \(w \) bit vector represents subsets of \(\{0, \ldots, w-1\} \)
- \(a_j = 1 \) if \(j \in A \)

\[
\begin{align*}
&-01101001 \quad \{ 0, 3, 5, 6 \} \\
&-01010101 \quad \{ 0, 2, 4, 6 \} \\
&\& \text{Intersection} \quad 01000001 \quad \{ 0, 6 \} \\
&\| \text{Union} \quad 01111101 \quad \{ 0, 2, 3, 4, 5, 6 \} \\
&^\wedge \text{Symmetric difference} \quad 00111100 \quad \{ 2, 3, 4, 5 \} \\
&\sim \text{Complement} \quad 10101010 \quad \{ 1, 3, 5, 7 \}
\end{align*}
\]
Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any “integral” data type
 - long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- \(~0x41\) \rightarrow 0xBE
 \(~01000001\) \rightarrow 10111110
- \(~0x00\) \rightarrow 0xFF
 \(~00000000\) \rightarrow 11111111

- 0x69 & 0x55 \rightarrow 0x41
 01101001 & 01010101 \rightarrow 01000001
- 0x69 | 0x55 \rightarrow 0x7D
 01101001 | 01010101 \rightarrow 01111101
Contrast: Logic Operations in C

Contrast to Logical Operators

- `&&`, `||`, `!`
 - View 0 as “False”
 - Anything nonzero as “True”
 - Always return 0 or 1

Examples (char data type)

- `!0x41` --> `0x00`
- `!0x00` --> `0x01`
- `!!0x41` --> `0x01`

- `0x69 && 0x55` --> `0x01`
- `0x69 || 0x55` --> `0x01`
Shift Operations

Left Shift: \(x \ll y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x \gg y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>01100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (x \gg 2)</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. (x \gg 2)</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument (x)</th>
<th>10100010</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x \ll 3)</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. (x \gg 2)</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. (x \gg 2)</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 \[A \land A = 0 \]

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y; // #1 */
    *y = *x ^ *y; // #2 */
    *x = *x ^ *y; // #3 */
}
```

<table>
<thead>
<tr>
<th>Step</th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A^B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A^B</td>
<td>(A^B)^B = A^(B^B) = A^0 = A</td>
</tr>
<tr>
<td>3</td>
<td>(A^B)^A = (B^A)^A = B^(A^A) = B^0 = B</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>