Using TCP Through Sockets

Revised February 1999

1 Introduction

This document is a tutorial for using UNIX sockets. All code appears in the 6.033 locker
beneath lab/src/one/.

2 File descriptors

Most I/O on UNIX systems takes place through the read and write system calls'. Before
discussing network I/0;, it helps to understand how these functions work even on simple files.
If you are already familiar with file descriptors and the read and write system calls, you can
skip to the next section.

Section 2.1 shows a very simple program that prints the contents of files to the standard
output—just like the UNIX cat command. The function typefile uses four system calls to
copy the contents of a file to the standard output.

e int open(char *path, int flags, ...);

The open system call requests access to a particular file. path specifies the name of
the file to access; flags determines the type of access being requested—in this case
read-only access. open ensures that the named file exists (or can be created, depending
on flags) and checks that the invoking user has sufficient permission for the mode of
access.

If successful, open returns a non-negative integer known as a file descriptor. All read
and write operations must be performed on file descriptors. File descriptors remain
bound to files even when files are renamed or deleted or undergo permission changes
that revoke access?.

By convention, file descriptors numbers 0, 1, and 2 correspond to standard input,
standard output, and standard error respectively. Thus a call to printf will result in a
write to file descriptor 1.

'High-level I/O functions such as fread and fprintf are implemented in terms of read and write.
2Note that not all network file systems properly implement these semantics.

Copyright (© 1999 Mazieres, Fu, Hu 1 Unlimited redistribution permitted



2.1

If unsuccessful, open returns —1 and sets the global variable errno to indicate the nature
of the error. The routine perror will print “filename: error message” to the standard
error based on errno.

int read (int fd, void *buf, int nbytes);

read will read up to nbytes bytes of data into memory starting at buf. It returns the
number of bytes actually read, which may very well be less than nbytes. If it returns
0, this indicates an end of file. If it returns —1, this indicates an error.

int write (int fd, void *buf, int nbytes);

write will write up to nbytes bytes of data at buf to file descriptor fd. It returns
the number of bytes actually written, which unfortunately may be less than nbytes in
some circumstances. Write returns 0 to indicate an end of file, and —1 to indicate an
error.

int close (int fd);

close deallocates a file descriptor. Systems typically limit each process to 64 file de-
scriptors by default (though the limit can sometimes be raised substantially with the
setrlimit system call). Thus, it is a good idea to close file descriptors after their last
use so as to prevent “too many open files” errors.

type.c: Copy file to standard output

#include <stdio.h>
#include <unistd.h>
#include <fcntl.h>

void

typefile (char xfilename)

{

}

int fd, nread;
char buf[1024];

fd = open (filename, O_RDONLY);

if (fd == -1) {
perror (filename);
return;

}

while ((nread = read (fd, buf, sizeof (buf))) > 0)

write (1, buf, nread);

close (fd);

int

main (int argc, char **argv)

{

int argno;

Copyright (© 1999 Mazieres, Fu, Hu 2 Unlimited redistribution permitted



for (argno = 1; argno < argc; argno++)
typefile (argv[argno]l);
exit (0);
}

3 TCP/IP Connections

3.1 Introduction

TCP is the reliable protocol many applications use to communicate over the Internet. TCP
provides a stream abstraction: Two processes, possibly on different machines, each have a
file descriptor. Data written to either descriptor will be returned by a read from the other.
Such network file descriptors are called sockets in UNIX.

Every machine on the Internet has a unique, 32-bit IP (Internet protocol) address. An
IP address is sufficient to route network packets to a machine from anywhere on the Inter-
net. However, since multiple applications can use TCP simultaneously on the same machine,
another level of addressing is needed to disambiguate which process and file descriptor in-
coming TCP packets correspond to. For this reason, each end of a TCP connection is named
by 16-bit port number in addition to its 32-bit IP address.

So how does a TCP connection get set up? Typically, a server will listen for connections
on an IP address and port number. Clients can then allocate their own ports and connect
to that server. Servers usually listen on well-known ports. For instance, finger servers listen
on port 79, web servers on port 80, and mail servers on port 25. A list of well-known port
numbers can be found in the file /etc/services on any UNIX machine.

The UNIX telnet utility will allow to you connect to TCP servers and interact with
them. By default, telnet connects to port 23 and speaks to a telnet daemon that runs
login. However, you can specify a different port number. For instance, port 7 on many
machines runs a TCP echo server:

athena), telnet athena.dtalup.mit.edu 7
...including Athena’s default telnet options: "-ax"
Trying 18.184.0.39...

Connected to ten-thousand-dollar-bill.dialup.mit.edu.
Escape character is ’7]°.

repeat after me...

repeat after me...

The echo server works!

The echo server works!

quit

quit

]

telnet> ¢

Connection closed.

athenay,

Copyright (© 1999 Mazieres, Fu, Hu 3 Unlimited redistribution permitted



Note that in order to quit telnet, you must type Control-] followed by q and return. The
echo server will happily echo anything you type like quit.

As another example, let’s look at the finger protocol, one of the simplest widely used TCP
protocols. The UNIX finger command takes a single argument of the form user@host. It
then connects to port 79 of host, writes the user string and a carriage-return line-feed over
the connection, and dumps whatever the server sends back to the standard output. We
can simulate the finger command using telnet. For instance, using telnet to do the
equivalent of the command finger help@mit.edu, we get:

athenal, telnet mit.edu 79

...including Athena’s default telnet options: "-ax"
Trying 18.72.0.100...

Connected to mit.edu.

Escape character is ’°]°.

help

These help topics are available:

about general options restrictions url
change-info motd policy services wildcards

To view one of these topics, enter "help name-of-topic-you-want".

Connection closed by foreign host.
athenal

3.2 TCP client programming

Now let’s see how to make use of sockets in C. Section 3.3 shows the source code to a simple
finger client that does the equivalent of the last telnet example of the previous section. The
function tcpconnect shows all the steps necessary to connect to a TCP server. It makes the
following system calls:

e int socket (int domain, int type, int protocol);

The socket system call creates a new socket, just as open creates a new file descriptor.
socket returns a non-negative file descriptor number on success, or —1 on an error.

When creating a TCP socket, domain should be AF_INET, signifying an IP socket, and
type should be SOCK_STREAM, signifying a reliable stream. Since the reliable stream
protocol for IP is TCP, the first two arguments already effectively specify TCP. Thus,
the third argument can be left 0, letting the Operating System assign a default protocol
(Which will be IPPRUTO_TCP).

Unlike file descriptors returned by open, you cannot immediately read and write data
to a file descriptor returned by socket. You must first assign the socket a local IP
address and port number, and in the case of TCP you need to connect the other end

Copyright (© 1999 Mazieres, Fu, Hu 4 Unlimited redistribution permitted



of the socket to a remote machine. The bind and connect system calls accomplish these
tasks.

e int bind (int s, struct sockaddr *addr, int addrlen);

bind sets the local address and port number of a socket. s is the file descriptor number
of a socket. For IP sockets, addr must be a structure of type sockaddr_in, usually
as follows (in /usr/include/netinet/in.h). addrlen must be the size of struct
sockaddr_in (or whichever structure one is using).

struct in_addr {
u_int32_t s_addr;
};

struct sockaddr_in {
short sin_family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

};

Different versions of UNIX may have slightly different structures. However, all will
have the fields sin_family, sin_port, and sin_addr. All other fields should be set to
zero. Thus, before using a struct sockaddr_in, you must call bzero on it, as is done
in tcpconnect. Once a struct sockaddr_in has been zeroed, the sin family field
must be set to the value AF_INET to indicate that this is indeed a sockaddr_in. (Bind
cannot take this for granted, as its argument is a more generic struct sockaddr .)

sin_port specifies which 16-bit port number to use. It is given in network (big-endian)
byte order, and so must be converted from host to network byte order with htons. It
is often the case when writing a TCP client that one wants a port number but does
not care which one. Specifying a sin_port value of 0 tells the OS to choose the
port number. The operating system will select an unused port number between 1,024
and 5,000 for the application. Note that only the super-user can bind port numbers
under 1,024. Many system services such as mail servers listen for connections on well-
known port numbers below 1,024. Allowing ordinary users to bind these ports would
potentially also allow them to do things like intercept mail with their own rogue mail
servers.

sin_addr contains a 32-bit IP address for the local end of a socket. The special value
INADDR_ANY tells the operating system to choose the IP address. This is usually what
one wants when binding a socket, since code typically does not care about the IP
address of the machine on which it is running.

e int connect (int s, struct sockaddr *addr, int addrlen);

Copyright (© 1999 Mazieres, Fu, Hu ) Unlimited redistribution permitted



connect specifies the address of the remote end of a socket. The arguments are the
same as for bind, with the exception that one cannot specify a port number of 0 or an
IP address of INADDR_ANY. Connect returns 0 on success or —1 on failure.

Note that one can call connect on a TCP socket without first calling bind. In that
case, connect will assign the socket a local address as if the socket had been bound to
port number 0 with address INADDR_ANY. The example finger calls bind for illustrative
purposes only.

These three system calls create a connected TCP socket, over which the finger program
writes the name of the user being fingered and reads the response. Most of the rest of the
code should be straight-forward, except you might wish to note the use of gethostbyname
to translate a hostname into a 32-bit IP address.

3.3 myfinger.c: A simple network finger client

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>
#include <netdb.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>

#define FINGER_PORT 79
#define bzero(ptr, size) memset (ptr, 0, size)

/* Create a TCP connection to host and port. Returns a file
* descriptor on success, -1 on error. x/
int
tcpconnect (char *host, int port)
{
struct hostent *h;
struct sockaddr_in sa;
int s;

/* Get the address of the host at which to finger from the
* hostname. */

h = gethostbyname (host);

if (th || h->h_length != sizeof (struct in_addr)) {
fprintf (stderr, "Js: no such host\n", host);
return -1;

}

/* Create a TCP socket. */
s = socket (AF_INET, SOCK_STREAM, 0);

/* Use bind to set an address and port number for our end of the

x finger TCP connection. */
bzero (&sa, sizeof (sa));

Copyright (© 1999 Mazieres, Fu, Hu 6 Unlimited redistribution permitted



sa.sin_family = AF_INET;
sa.sin_port = htons (0); /* tells 0S to choose a port */
sa.sin_addr.s_addr = htonl (INADDR_ANY); /* tells 0S to choose IP addr */
if (bind (s, (struct sockaddr *) &sa, sizeof (sa)) < 0) {

perror ("bind");

close (s);

return -1;

}

/* Now use h to set set the destination address. */
sa.sin_port = htons (port);
sa.sin_addr = *(struct in_addr *) h->h_addr;

/* And connect to the server */

if (connect (s, (struct sockaddr *) &sa, sizeof (sa)) < 0) {
perror (host);
close (s);
return -1;

}

return s;

int
main (int argc, char **argv)
{

char *user;

char *host;

int s;

int nread;

char buf[1024];

/* Get the name of the host at which to finger from the end of the
* command line argument. */
if (argec == 2) {
user = malloc (1 + strlen (argv[1]));
if (luser) {
fprintf (stderr, "out of memory\n");
exit (1);
}
strcpy (user, argv([1]);
host = strrchr (user, ’Q@’);

}

else
user = host = NULL;

if ('host) {
fprintf (stderr, "usage: ’%s user@host\n", argv[0]);
exit (1);

}

*host++ = ’\0’;

/* Try connecting to the host. */
s = tcpconnect (host, FINGER_PORT);

Copyright (©) 1999 Mazieres, Fu, Hu 7 Unlimited redistribution permitted



if (s < 0)
exit (1);

/* Send the username to finger */
if (write (s, user, strlen (user)) < O
|| write (s, "\r\n", 2) < 0) {
perror (host);
exit (1);
}

/* Now copy the result of the finger command to stdout. */
while ((nread = read (s, buf, sizeof (buf))) > 0)
write (1, buf, nread);

exit (0);

3.4 TCP server programming

Now let’s look at what happens in a TCP server. Section 3.5 shows the complete source
code to a simple finger server. It listens for clients on the finger port, 79. Then, for each
connection established, it reads a line of data, interprets it as the name of a user to finger,
and runs the local finger utility directing its output back over the socket to the client.

The function tcpserv takes a port number as an argument, binds a socket to that port,
tells the kernel to listen for TCP connections on that socket, and returns the socket file
descriptor number, or —1 on an error. This requires three main system calls:

e int socket (int domain, int type, int protocol);

This function creates a socket, as described in Section 3.2.

e int bind (int s, struct sockaddr *addr, int addrlen);

This function assigns an address to a socket, as described in Section 3.2. Unlike the
finger client, which did not care about its local port number, here we specify a specific
port number.

Binding a specific port number can cause complications when killing and restarting
servers (for instance during debugging). Closed TCP connections can sit for a while
in a state called TIME WAIT before disappearing entirely. This can prevent a restarted
TCP server from binding the same port number again, even if the old process no longer
exists. The setsockopt system call shown in tcpserv avoids this problem. It tells the
operating system to let the socket be bound to a port number already in use.

e int listen (int s, int backlog);

listen tells the operating system to accept network connections. It returns 0 on success,
and —1 on error. s is an unconnected socket bound to the port on which to accept
connections. backlog formerly specified the number of connections the operating sys-
tem would accept ahead of the application. That argument is ignored by most modern
UNIX operating systems, however. People traditionally use the value 5.

Copyright (© 1999 Mazieres, Fu, Hu 8 Unlimited redistribution permitted



Once you have called listen on a socket, you cannot call connect, read, or write, as the
socket has no remote end. Instead, a new system call, accept, creates a new socket for
each client connecting to the port s is bound to.

Once tcpserv has begun listening on a socket, main accepts connections from clients, with
the system call accept.

e int accept (int s, struct sockaddr *addr, int *addrlenp);

Accept takes a socket s on which one is listening and returns a new socket to which
a client has just connected. If no clients have connected, accept will block until one
does. accept returns —1 on an error.

For TCP, addr should be a struct sockaddr_in *. addrlenp must be a pointer to
an integer containing the value sizeof (struct sockaddr_in). accept will adjust
*xaddrlenp to contain the actual length of the struct sockaddr it copies into *addr.
In the case of TCP, all struct sockaddr_in’s are the same size, so *addrlenp should
not change.

The finger daemon makes use of a few more UNIX system calls which, while not network-
specific, are often encountered in network servers. With fork it creates a new process. This
new process calls dup2 to redirect its standard output and error over the accepted socket.
Finally, a call to execl replaces the new process with an instance of the finger program.
Finger inherits its standard output and error, so these go straight back over the network to
the client.

e int fork (void);

fork creates a new process, identical to the current one. In the old process, fork returns
a process ID of the new process. In the new or “child” process, fork returns 0. fork
returns —1 if there is an error.

e int dup2(int oldfd, int newfd);

dup? closes file descriptor number newfd, and replaces it with a copy of o1dfd. When
the second argument is 1, this changes the destination of the standard output. When
that argument is 2, it changes the standard error.

e int execl(char *path, char *arg0O, ..., NULL);

The execl system call runs a command—as if you had typed it on the command line.
The command executed will inherit all file descriptors except those with the close-on-
exec flag set. execl replaces the currently executing program with the one specified by
path. On success, it therefore does not return. On failure, it returns —1.

Copyright (© 1999 Mazieres, Fu, Hu 9 Unlimited redistribution permitted



3.5 myfingerd.c: A simple network finger server

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

<stdio.h>
<stdlib.h>
<unistd.h>
<string.h>
<netdb.h>
<signal.h>
<fentl.h>
<errno.h>
<sys/types.h>
<sys/socket.h>
<netinet/in.h>
<arpa/inet.h>

#define FINGER_PORT 79
#define FINGER_COMMAND "/usr/bin/finger"
#define bzero(ptr, size) memset (ptr, 0, size)

/* Create a TCP socket, bind it to a particular port, and call listen

* for connections on it.

* clients can connect to a server. */

int
tcpserv (int port)
{
int s, n;
struct sockaddr_in sin;

/* The address of this server */

bzero (&sin, sizeof (sin));
sin.sin_family = AF_INET;
sin.sin_port = htons (port);

/* We are interested in listening on any and all IP addresses this
* machine has, so use the magic IP address INADDR_ANY. */
sin.sin_addr.s_addr = htonl (INADDR_ANY) ;

s = socket (AF_INET, SOCK_STREAM, 0);
if (s < 0) {

perror ("socket");

return -1;

}

These are the three steps necessary before

/* Allow the program to run again even if there are old connections

* in TIME_WAIT.

This is the magic you need to do to avoid seeing

* "Address already in use" errors when you are killing and
* restarting the daemon frequently. x/

n=1;

if (setsockopt (s, SOL_SOCKET, SO_REUSEADDR, (char *)&n, sizeof (n)) < 0) {
perror ("SO_REUSEADDR");
close (s);
return -1;

}

/* This function sets the close-on-exec bit of a file descriptor.

Copyright (© 1999 Mazieres, Fu, Hu 10

Unlimited redistribution permitted



* That way no programs we execute will inherit the TCP server file

* descriptor. x*/
fcntl (s, F_SETFD, 1);

if (bind (s, (struct sockaddr *) &sin, sizeof (sin)) < 0) {
fprintf (stderr, "TCP port %d: %s\n", port, strerror (errno));

close (s);
return -1;

}

if (listen (s, 5) < 0) {
perror ("listen");
close (s);
return -1;

}

return s;

}

/* Read a line of input from a file descriptor and return it. Returns

* NULL on EOF/error/out of memory.

static char x*
readline (int s)

{

May over-read, so don’t use this
* if there is useful data after the first line. */

char xbuf = NULL, *nbuf;
int buf_pos = 0, buf_len = 0;
int i, n;

for (5;) {
/* Ensure there is room in the buffer */
if (buf_pos == buf_len) {
buf_len = buf_len 7 buf_len << 1 : 4;
nbuf = realloc (buf, buf_len);
if (!'nbuf) {
free (buf);
return NULL;
}
buf = nbuf;
}

/* Read some data into the buffer */
n = read (s, buf + buf_pos, buf_len - buf_pos);
if (n <= 0) {
if (n < 0)
perror ("read");
else
fprintf (stderr, "read: EQF\n");
free (buf);
return NULL;
}

/* Look for the end of a line, and return if we got it. Be
*x generous in what we consider to be the end of a line. */

Copyright (© 1999 Mazieres, Fu, Hu 11

Unlimited redistribution permitted



for (i = buf_pos; i < buf_pos + n; i++)
if (buf[i] == °\0’ || buf[i]l == ’\r’ || buf[i] == ’\n’) {
buf[i] = ’\0’;
return buf;

}

buf_pos += n;
}
}

static void
runfinger (int s)
{

char *user;

/* Read the username being fingered. */
user = readline (s);

/* Now connect standard input and standard output to the socket,
* instead of the invoking user’s terminal. */

if (dup2 (s, 1) < 0 || dup2 (s, 2) < 0) {
perror ("dup2");
exit (1);

}

close (s);

/* Run the finger command. It will inherit our standard output and
* error, and therefore send its results back over the network. */
execl (FINGER_COMMAND, "finger", "--", *user ? user : NULL, NULL);

/* We should never get here, unless we couldn’t run finger. x/
perror (FINGER_COMMAND) ;
exit (1);

int
main (int argc, char **argv)
{
int ss, cs;
struct sockaddr_in sin;
int sinlen;
int pid;

/* This system call allows one to call fork without worrying about
calling wait. Don’t worry about what it means unless you start
caring about the exit status of forked processes, in which case
you should delete this line and read the manual pages for wait
and waitpid. For a description of what this signal call really
does, see the manual page for sigaction and look for
SA_NOCLDWAIT. Signal is an older signal interface which when

*x invoked this way is equivalent to setting SA_NOCLDWAIT. */
signal (SIGCHLD, SIG_IGN);

* X X ¥ X %

Copyright (© 1999 Mazieres, Fu, Hu 12 Unlimited redistribution permitted



ss = tcpserv (FINGER_PORT);
if (ss < 0)
exit (1);

for (;;) {
sinlen = sizeof (sin);
cs = accept (ss, (struct sockaddr *) &sin, &sinlen);

if (cs < 0) {
perror ("accept");
exit (1);

}

printf ("connection from %s\n", inet_ntoa (sin.sin_addr));

pid = fork Q;

if (!pid)
/* Child process */
runfinger (cs);

close (cs);

4 Non-blocking I/0

4.1 The 0_NONBLOCK flag

The finger client in Section 3.3 is only as fast as the server to which it talks. When the
program calls connect, read, and sometimes even write, it must wait for a response from the
server before making any further progress. This does not ordinarily pose a problem; if finger
blocks, the operating system will schedule another process so the CPU can still perform
useful work.

On the other hand, suppose you want to finger some huge number of users. Some servers
may take a long time to respond (for instance, connection attempts to unreachable servers
will take over a minute to time out). Thus, your program itself may have plenty of useful
work to do, and you may not want to schedule another process every time a server is slow
to respond.

For this reason, UNIX allows file descriptors to be placed in a non-blocking mode. A bit
associated with each file descriptor, 0_NONBLOCK, determines whether it is in non-blocking
mode or not. Section 4.5 shows some utility functions for non-blocking I/O. The function
make async (left for you to implement) sets the 0_NONBLOCK bit of a file descriptor non-
blocking with the fcntl system call. Many system calls behave slightly differently on file
descriptors which have 0_NONBLOCK set:

e read. When there is data to read, read behaves as usual. When there is an end of file,
read still returns 0. If, however, a process calls read on a non-blocking file descriptor
when there is no data to be read yet, instead of waiting for data, read will return —1
and set errno to EAGAIN.

Copyright (© 1999 Mazieres, Fu, Hu 13 Unlimited redistribution permitted



e write. Like read, write will return 0 on an end of file, and —1 with an errno of EAGAIN
if there is no buffer space. If, however, there is some buffer space but not enough to
contain the entire write request, write will take as much data as it can and return a
value smaller than the length specified as its third argument. Code must handle such
“short writes” by calling write again later on the rest of the data.

e connect. A TCP connection request requires a response from the listening server.
When called on a non-blocking socket, connect cannot wait for such a response before
returning. For this reason, connect on a non-blocking socket usually returns —1 with
errno set to EINPROGRESS. Occasionally, however, connect succeeds or fails immediately
even on a non-blocking socket, so you must be prepared to handle this case.

e accept. When there are connections to accept, accept will behave as usual. If there are
no pending connections, however, accept will return —1 and set errno to EWOULDBLOCK.
It is worth noting that file descriptors returned by accept have 0_NONBLOCK clear,
whether or not the listening socket is non-blocking. In an asynchronous server, one
often sets 0_NONBLOCK immediately on any file descriptors accept returns.

4.2 select: Finding out when sockets are ready

0_NONBLOCK allows an application to keep the CPU when an I/O system call would ordinarily
block. However, programs can use several non-blocking file descriptors and still find none
of them ready for I/O. Under such circumstances, programs need a way to avoid wasting
CPU time by repeatedly polling individual file descriptors. The select system call solves this

problem by letting applications sleep until one or more file descriptors in a set is ready for
I/0.

select usage

e int select (int nfds, fd_set *rfds, fd_set *wfds, fd_set *efds,
struct timeval *timeout);

select takes pointers to sets of file descriptors and a timeout. It returns when one or
more of the file descriptors are ready for I/O, or after the specified timeout. Before
returning, select modifies the file descriptor sets so as to indicate which file descriptors
actually are ready for I/O. select returns the number of ready file descriptors, or —1
on an error.

select represents sets of file descriptors as bit vectors—one bit per descriptor. The first
bit of a vector is 1 if that set contains file descriptor 0, the second bit is 1 if it contains
descriptor 1, and so on. The argument nfds specifies the number of bits in each of the
bit vectors being passed in. Equivalently, nfds is one more than highest file descriptor
number select must check on.

These file descriptor sets are of type fd_set. Several macros in system header files
allow easy manipulation of this type. If £d is an integer containing a file descriptor,
and fds is a variable of type fd_set, the following macros can manipulate fds:

Copyright (© 1999 Mazieres, Fu, Hu 14 Unlimited redistribution permitted



— FD_ZERO (&fds);
Clears all bits in a fds.

— FD_SET (fd, &fds);
Sets the bit corresponding to file descriptor £d in fds.

— FD_CLR (fd, &fds);
Clears the bit corresponding to file descriptor £d in fds.

— FD_ISSET (fd, &fds);
Returns a true if and only if the bit for file descriptor £d is set in fds.

select takes three file descriptor sets as input. rfds specifies the set of file descriptors
on which the process would like to perform a read or accept. wfds specifies the set
of file descriptors on which the process would like to perform a write. efds is a set
of file descriptors for which the process is interested in exceptional events such as the
arrival of out of band data. In practice, people rarely use efds. Any of the fd_set *
arguments to select can be NULL to indicate an empty set.

The argument timeout specifies the amount of time to wait for a file descriptor to
become ready. It is a pointer to a structure of the following form:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* and microseconds */

};

timeout can also be NULL, in which case select will wait indefinitely.

Tips and subtleties

File descriptor limits. Programmers using select may be tempted to write code capable
of using arbitrarily many file descriptors. Be aware that the operating system limits the
number of file descriptors a process can have. If you do not limit the number of descriptors
your program uses, you must prepare for system calls such as socket and accept to fail with
errors like EMFILE. By default, a modern UNIX system typically limits processes to 64 file
descriptors (though the setrlimit system call can sometimes raise that limit substantially).
Do not count on using all 64 file descriptors either. All processes inherit at least three file
descriptors (standard input, output, and error), and some C library functions need to use
file descriptors too. It should be safe to assume you can use 56 file descriptors though.

If you do raise the maximum number of file descriptors allowed to your process, there
is another problem to be aware of. The fd_set type defines a vector with FD_SETSIZE bits
in it (typically 256). If your program uses more than FD_SETSIZE file descriptors, you must
allocate more memory for each vector than than an £d_set contains, and you can no longer
use the FD_ZERQO macro.

Do not poll with select. Students sometimes misunderstand the use of the select call by
implementing a polling mechanism. This is precisely what select can avoid. Polling wastes

Copyright (© 1999 Mazieres, Fu, Hu 15 Unlimited redistribution permitted



CPU time by continually checking file descriptors for I/O. Consider this to the analogy of
an impatient kid who constantly asks, “Mom, are we there yet? Mom, are we there yet?”
This is polling. Now consider a well-behaved kid who just says, “Hey Mom, tell me when
we get there.” This is a callback. Which sounds more reasonable to you?

Using select with connect. After connecting a non-blocking socket, you might like to
know when the connect has completed and whether it succeeded or failed. TCP servers can
accept connections without writing to them (for instance, our finger server waited to read a
username before sending anything back over the socket). Thus, selecting for readability will
not necessarily notify you of a connect’s completion; you must check for writability.

When select does indicate the writability of a non-blocking socket with a pending connect,
how can you tell if that connect succeeded? The simplest way is to try writing some data to
the file descriptor to see if the write succeeds. This approach has two small complications.
First, writing to an unconnected socket does more than simply return an error code; it kills
the current process with a SIGPIPE signal. Thus, any program that risks writing to an
unconnected socket should tell the operating system that it wants to ignore SIGPIPE. The
signal system call accomplishes this:

signal (SIGPIPE, SIG_IGN);

The second complication is that you may not have any data to write to a socket, yet still wish
to know if a non-blocking connect has succeeded. In that case, you can find out whether a
socket is connected with the getpeername system call. getpeername takes the same argument
types as accept, but expects a connected socket as its first argument. If getpeername returns
0 (meaning success), then you know the non-blocking connect has succeeded. If it returns
—1, then the connect has failed.

Example

Section 4.5 shows a simple select-based dispatcher. There are three functions, which we leave
up to you to implement:

e void cb_add (int fd, int write, void (*fn) (void *), void *arg);
Tells the dispatcher to call function fn with argument arg when file descriptor fd is
ready for reading, if write is 0, or writing, otherwise.

e void cb_free (int fd, int write);
Tells the dispatcher it should no longer call any function when file descriptor fd is
ready for reading or writing (depending on the value of write).

e void cb_check (void);

Wait until one or more of the registered file descriptors is ready, and make any appro-
priate callbacks.

The function cb_add maintains two fd_set variables, rfds for descriptors with read
callbacks, and wfds for ones with write callbacks. It also records the function calls it needs
to make in two arrays of cb (“callback”) structures.

Copyright (© 1999 Mazieres, Fu, Hu 16 Unlimited redistribution permitted



cb_check calls select on the file descriptors in rfds and wfds. Since select overwrites the
fd_set structures it gets, cb_check must first copy the sets it is checking. cb_check then
loops through the sets of ready descriptors making any appropriate function calls.

4.3 Using shutdown instead of close

In network I/0, a server may shutdown one direction of a socket connection. For instance, a
web browser may send a request, shutdown writing on the client side, read a response from
the web server, then shutdown writing. In contrast, the close system call will shutdown both
directions of a socket connection. You will find the shutdown system call useful in a proxy
when passing EOFs.

e int shutdown (int s, int how);

The shutdown system call closes part or all of a full-duplex connection described by
the file descriptor s. shutdown informs the kernel that no one is interested in further
reading or writing to a file descriptor. Future reads or writes can be independently
disallowed. In contrast to the close system call, shutdown enables fine-grained control
over a full-duplex connection.

Setting how to 0 disallows future reads. Setting how to 1 disallows future writes (par-
ticularly useful on TCP sockets). Setting how to 2 disallows both reads and writes.

4.4 async.h: Interface to async.c

#ifndef _ASYNC_H_ /* Guard against multiple inclusion */
#define _ASYNC_H_ 1

/* Enable stress-tests. */
/* #define SMALL_LIMITS 1 x*/

#include <sys/types.h>

#if __GNUC__ !'= 2

/* The __attribute__ keyword helps make gcc -Wall more useful, but
* doesn’t apply to other C compilers. You don’t need to worry about
* what __attribute__ does (though if you are curious you can consult
* the gcc info pages). */

#define __attribute__(x)

#endif /* __GNUC__ !'= 2 %/

/* 1 + highest file descriptor number expected */
#define FD_MAX 64

/* The number of TCP connections we will use. This can be no higher
than FD_MAX, but we reserve a few file descriptors because 0, 1,
and 2 are already in use as stdin, stdout, and stderr. Moreover,
libc can make use of a few file descriptors for functions like
gethostbyname. */

* ¥ X %

Copyright (© 1999 Mazieres, Fu, Hu 17 Unlimited redistribution permitted



#define NCON_MAX FD_MAX - 8

void fatal (const char *msg, ...)
__attribute__ ((noreturn, format (printf, 1, 2)));

/* Malloc-like functions that don’t fail. */
void *xrealloc (void *, size_t);

#define xmalloc(size) xrealloc (0, size)
#define xfree(ptr) xrealloc (ptr, 0)

#define bzero(ptr, size) memset (ptr, 0, size)

void make_async (int);

void cb_add (int, int, void (*fn) (void *), void *arg);
void cb_free (int, int);

void cb_check (void);

#endif /* !_ASYNC_H_ */

4.5 async.c: Handy routines for asynchronous I/0O

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdarg.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <assert.h>
#include <sys/socket.h>

#include "async.h"

/* Callback to make when a file descriptor is ready */
struct cb {

void (*cb_fn) (void *); /* Function to call */

void *cb_arg; /* Argument to pass function */
};
static struct cb rcb[FD_MAX], wcb[FD_MAX]; /* Per fd callbacks */
static fd_set rfds, wfds; /* Bitmap of cb’s in use */
void
cb_add (int fd, int write, void (*fn) (void *), void *arg)
{

struct cb *c;

assert (fd >= 0 && fd < FD_MAX);

c = &(write 7 wcb : rcb) [fd];
c—>cb_fn = fn;

c->cb_arg = arg;

FD_SET (fd, write 7 &wfds : &rfds);

void

Copyright (© 1999 Mazieres, Fu, Hu 18 Unlimited redistribution permitted



cb_free (int fd, int write)
{
assert (fd >= 0 && fd < FD_MAX);
FD_CLR (fd, write 7 &wfds : &rfds);
}

void

cb_check (void)

{
fd_set trfds, twfds;
int i, n;

/* Call select. Since the fd_sets are both input and output
* arguments, we must copy rfds and wfds. */

trfds = rfds;

twfds = wids;

n = select (FD_MAX, &trfds, &twfds, NULL, NULL);

if (n < 0)
fatal ("select: %s\n", strerror (errno));

/* Loop through and make callbacks for all ready file descriptors */
for (1 = 0; n &% i < FD_MAX; i++) {
if (FD_ISSET (i, &trfds)) {
n--;
/* Because any one of the callbacks we make might in turn call
* cb_free on a higher numbered file descriptor, we want to make
* sure each callback is wanted before we make it. Hence check
* rfds. */
if (FD_ISSET (i, &rfds))
rcb[i].cb_fn (rcb[i].cb_arg);
}
if (FD_ISSET (i, &twfds)) {
n--;
if (FD_ISSET (i, &wfds))
wecb[i].cb_fn (web[i].cb_arg);

void
make_async (int s)
{

int n;
/* Make file file descriptor nonblocking. */
if ((n = fcntl (s, F_GETFL)) < O
|| fecntl (s, F_SETFL, n | O_NONBLOCK) < 0)
fatal ("O_NONBLOCK: %s\n", strerror (errno));

/* You can pretty much ignore the rest of this function... */

/* Many asynchronous programming errors occur only when slow peers
* trigger short writes. To simulate this during testing, we set

Copyright (© 1999 Mazieres, Fu, Hu 19 Unlimited redistribution permitted



* the buffer size on the socket to 4 bytes. This will ensure that
* each read and write operation works on at most 4 bytes--a good
* stress test. */
#if SMALL_LIMITS
#if defined (SO_RCVBUF) && defined (SO_SNDBUF)
/* Make sure this really is a stream socket (like TCP). Code using
* datagram sockets will simply fail miserably if it can never
* transmit a packet larger than 4 bytes. */
{
int sn = sizeof (n);
if (getsockopt (s, SOL_SOCKET, SO_TYPE, (char *)&n, &sn) < 0
[l n !'= SOCK_STREAM)

return;
}
n = 4;
if (setsockopt (s, SOL_SOCKET, SO_RCVBUF, (void *)&n, sizeof (n)) < 0)
return;

if (setsockopt (s, SOL_SOCKET, SO_SNDBUF, (void *)&n, sizeof (n)) < 0)
fatal ("SO_SNDBUF: %s\n", strerror (errmo));
#else /* !'SO_RCVBUF || !SO_SNDBUF */
#error "Need SO_RCVBUF/SO_SNDBUF for SMALL_LIMITS"
#endif /* SO_RCVBUF && SO_SNDBUF */
#endif /* SMALL_LIMITS */

/* Enable keepalives to make sockets time out if servers go away. */

n=1;

if (setsockopt (s, SOL_SOCKET, SO_KEEPALIVE, (void *) &n, sizeof (n)) < 0)
fatal ("SO_KEEPALIVE: %s\n", strerror (errno));

void *
xrealloc (void *p, size_t size)
{
p = realloc (p, size);
if (size &% !p)
fatal ("out of memory\n");
return p;

}

void
fatal (const char *msg, ...)
{

va_list ap;

fprintf (stderr, "fatal: ");
va_start (ap, msg);

viprintf (stderr, msg, ap);
va_end (ap);

exit (1);

Copyright (© 1999 Mazieres, Fu, Hu 20 Unlimited redistribution permitted



4.6 Putting it all together

We now present an example that demonstrates the power of non-blocking socket I/O. Sec-
tion 4.7 shows the source code to multifinger—an asynchronous finger client. When fingering
many hosts, multifinger performs an order of magnitude better than a traditional UNIX fin-
ger client. It connects to NCON_MAX hosts in parallel using non-blocking I/O. Some simple
testing showed this client could finger 1,000 hosts in under 2 minutes.

4.7 multifinger.c:

#include
#include
#include
#include
#include
#include
#include
#include
#include

#include

<stdio.h>
<unistd.h>
<string.h>
<errno.h>
<netdb.h>
<signal.h>
<netinet/in.h>
<sys/types.h>
<sys/socket.h>

"async.h"

#define FINGER_PORT 79
#define MAX_RESP_SIZE 16384

struct fcon {

int fd;

char *host;
char *user;
int user_len;
int user_pos;
void *resp;
int resp_len;
int resp_pos;

};

int ncon;

static void
fcon_free (struct fcon *fc)

{

if (fc-

>fd >= 0) {

/*
/*
/*
/*
/*
/*
/*

/*

cb_free (fc->fd, 0);
cb_free (fc->fd, 1);
close (fc->fd);
ncon--;

}

xfree (fc->host);
xfree (fc—>user);
xfree (fc->resp);

A mostly? asynchronous finger client

Host to which we are connecting */
User to finger on that host */

Lenght
Number
Finger
Number
Number

Number

of the user string */

bytes of user already written to network */
response read from network */

of allocated bytes resp points to */

of resp bytes used so far */

of open TCP connections */

3gethostbyname performs synchronous socket I/0.

Copyright (© 1999 Mazieres, Fu, Hu 21

Unlimited redistribution permitted



xfree (fc);

}

void

finger_done (struct fcon *fc)

{
printf ("[%s]\n", fc->host);
fwrite (fc->resp, 1, fc->resp_pos, stdout)
fcon_free (fc);

}

static void
finger_getresp (void *_fc)

I

: 512;

{
struct fcon *fc = _fc;
int n;
if (fc->resp_pos == fc->resp_len) {
fc->resp_len = fc->resp_len ? fc->resp_len << 1
if (fc->resp_len > MAX_RESP_SIZE) {
fprintf (stderr, "Ys: response too large\n", fc->host);
fcon_free (fc);
return;
}
fc->resp = xrealloc (fc->resp, fc->resp_len);
}

n = read (fc->fd, fc->resp + fc->resp_pos, fc->resp_len - fc->resp_pos);

if (n == 0)
finger_done (fc);
else if (n < 0) {
if (errno == EAGAIN)
return;
else
perror (fc->host);
fcon_free (fc);
return;

}

fc->resp_pos += n;

static void
finger_senduser (void *_fc)
{
struct fcon *fc = _fc;
int n;

n = write (fc->fd, fc->user + fc->user_pos, fc->user_len - fc->user_pos);

if (n <= 0) {
if (n == 0)

fprintf (stderr, "%s: EOF\n", fc->host);

else if (errno == EAGAIN)

Copyright (©) 1999 Mazieres, Fu, Hu

22

Unlimited redistribution permitted



return;
else

perror (fc->host);
fcon_free (fc);
return;

}

fc->user_pos += n;
if (fc->user_pos == fc->user_len) {
cb_free (fc->fd, 1);
cb_add (fc->fd, 0, finger_getresp, fc);
}
}

static void
finger (char *arg)
{
struct fcon *fc;
char *p;
struct hostent *h;
struct sockaddr_in sin;

p = strrchr (arg, ’Q@’);

if ('p) {
fprintf (stderr, "Ys: ignored -- not of form ’user@host’\n", arg);
return;

}

fc = xmalloc (sizeof (*fc));
bzero (fc, sizeof (*fc));

fc->fd = -1;

fc->host = xmalloc (strlen (p));

strcpy (fc->host, p + 1);

fc->user_len = p - arg + 2;

fc->user = xmalloc (fc->user_len + 1);

memcpy (fc->user, arg, fc->user_len - 2);
memcpy (fc->user + fc->user_len - 2, "\r\n", 3);

h = gethostbyname (fc->host);

if ('h) {
fprintf (stderr, "Js: hostname lookup failed\n", fc->host);
fcon_free (fc);
return;

}

fc->fd = socket (AF_INET, SOCK_STREAM, 0);
if (fc->fd < 0)

fatal ("socket: %s\n", strerror (errno));
ncon++;
make_async (fc->fd);

bzero (&sin, sizeof (sin));

Copyright (©) 1999 Mazieres, Fu, Hu 23 Unlimited redistribution permitted



sin.sin_family = AF_INET;
sin.sin_port = htons (FINGER_PORT);
sin.sin_addr = *(struct in_addr *) h->h_addr;
if (connect (fc->fd, (struct sockaddr *) &sin, sizeof (sin)) < O
&% errno != EINPROGRESS) {
perror (fc->host);
fcon_free (fc);
return;

}

cb_add (fc->fd, 1, finger_senduser, fc);

int
main (int argc, char **argv)
{

int argno;

/* Writing to an unconnected socket will cause a process to receive
* a SIGPIPE signal. We don’t want to die if this happens, so we

x ignore SIGPIPE. x*/

signal (SIGPIPE, SIG_IGN);

/* Fire off a finger request for every argument, but don’t let the
* number of outstanding connections exceed NCON_MAX. */
for (argno = 1; argno < argc; argno++) {
while (ncon >= NCON_MAX)
cb_check ();
finger (argv[argno]);

}

while (ncon > 0)
cb_check ();
exit (0);

5 Finding out more

This document outlines the system calls needed to perform network I/O on UNIX systems.
You may find that you wish to know more about the workings of these calls when you are
programming. Fortunately these system calls are documented in detail in the UNIX manual
pages, which you can access via the man command. Section 2 of the manual corresponds to
system calls. To look up the manual page for a system call such as socket, you can simply
execute the command “man socket.” Unfortunately, some system calls such as write have
names that conflict with UNIX commands. To see the manual page for write, you must
explicitly specify section two of the manual page, which you can do with “man 2 write”
on BSD machines or “man -s 2 write” on System V. If you are unsure in which section of
the manual to look for a command, you can run “whatis write” to see a list of sections in
which it appears.

Copyright (© 1999 Mazieres, Fu, Hu 24 Unlimited redistribution permitted



6 About this document

David Mazieres developed the original version of this document in 1998. Jeff Hu and Kevin
Fu changed the content for the 6.033 lab in 1999.

Copyright (© 1999 Mazieres, Fu, Hu 25 Unlimited redistribution permitted



