An Advanced 4.3BSD Interpiocess Communication Uitorial

Samuel J. Leffler

Robert S. Fabry

William N. Joy
Phil Lapsley

Computer Systems Research Group
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley California 94720

Steve Miller
Chris Torek

Heterogeneous Systems Laboratory
Department of Computer Science
University of Maryland, College Park
College Park, Maryland 20742

ABSTRACT

This document provides an introduction to the interprocess communication facili-
ties included in the 4.3BSD release of the UNIX* system.

It discusses the overall model for interprocess communication and introduces the
interprocess communication primitives which have been added to the sydtermajor
ity of the document considers the use of these primitives in developing applicatians.

reader is expected to be familiar with the C programming language as all examples are
written in C.

* UNIX is a TTademark of Bell Laboratories.

PS1:8-2 Advanced.3BSD IPC Titorial

1. INTRODUCTION

One of the most important additions to UNIX in 4.2BSD was interprocess communichtiese facilities

were the result of more than two years of discussion and resédrelacilities provided in 4.2BSD incor
porated many of the ideas from current research, while trying to maintain the UNIX philosophy of simplic-
ity and concisenessThe current release of Berkeley UNIX, 4.3BSD, completes some of the IPC facilities
and provides an upward-compatible interfatieis hoped that the interprocess communication facilities
included in 4.3BSD will establish a standard for UNIKXrom the response to the design, it appears many
organizations carrying out work with UNIX are adopting it.

UNIX has previously been very weak in the area of interprocess communicgtionto the 4BSD
facilities, the only standard mechanism which allowed two processes to communicate were pipes (the mpx
files which were part of &sion 7 were experimentallJnfortunately pipes are very restrictive in that the
two communicating processes must be related through a common anEesiioer the semantics of pipes
makes them almost impossible to maintain in a distributed environment.

Earlier attempts at extending the IPC facilities of UNIX have met with mixed readitee majority
of the problems have been related to the fact that these facilities have been tied to the UNIX file system,
either through naming or implementatioBonsequentlythe IPC facilities provided in 4.3BSD have been
designed as a totally independent subsyst@éire 4.3BSD IPC allows processes to rendezvous in many
ways. Processasay rendezvous through a UNIX file system-like name space (a space where all names
are path names) as well as through a network name spacact, new name spaces may be added at a
future time with only minor changes visible to useRurther the communication facilities have been
extended to include more than the simple byte stream provided by aTjpiese extensions have resulted
in a completely new part of the system which users will need time to familiarize themselvedt vugith.
likely that as more use is made of these facilities they will be refined; only time will tell.

This document provides a high-level description of the IPC facilities in 4.3BSD and theit isse.
designed to complement the manual pages for the IPC primitives by examples of th&ineisemainder
of this document is ganized in four sectionsSection 2 introduces the IPC-related system calls and the
basic model of communicatiorSection 3 describes some of the supporting library routines users may find
useful in constructing distributed applicatior8ection 4 is concerned with the client/server model used in
developing applications and includes examples of the two major types of seBeeton 5 delves into
advanced topics which sophisticated users are likely to encounter when using the IPC facilities.

Advanced 4.3BSD IPCukorial PS1:8-3

2. BASICS

The basic building block for communication is weket A socket is an endpoint of communication
to which a name may d®und Each socket in use hagygpeand one or more associated procesSexk-
ets exist withincommunication domainsA communication domain is an abstraction introduced to bundle
common properties of processes communicating through socetssuch property is the scheme used to
name socketsFor example, in the UNIX communication domain sockets are named with UNIX path
names; e.g. a socket may be namv/foo”. Socketsnormally exchange data only with sockets in the
same domain (it may be possible to cross domain boundaries, but only if some translation process is per
formed). The4.3BSD IPC facilities support three separate communication domains: the UNIX domain, for
on-system communication; the Internet domain, which is used by processes which communicate using the
the DARRA standard communication protocols; and the NS domain, which is used by processes which
communicate using the Xerox standard communication protoc®ls&. underlying communication facili-
ties provided by these domains have a significant influence on the internal system implementation as well
as the interface to socket facilities available to a. usarexample of the latter is that a sockeperating’
in the UNIX domain sees a subset of the error conditions which are possible when operating in the Internet
(or NS) domain.

0.1. Socketypes

Sockets are typed according to the communication properties visible to. aPumsgsses are pre-
sumed to communicate only between sockets of the same type, although there is nothing that prevents com-
munication between sockets offdifent types should the underlying communication protocols support this.

Four types of sockets currently are available to a usatreamsocket provides for the bidirectional,
reliable, sequenced, and unduplicated flow of data without record boundssids.from the bidirectional-
ity of data flow a pair of connected stream sockets provides an interface nearly identical to that of pipest.

A datagramsocket supports bidirectional flow of data which is not promised to be sequenced, reli-
able, or unduplicatedThat is, a process receiving messages on a datagram socket may find messages
duplicated, and, possiblin an order diferent from the order in which it was sedn important character
istic of a datagram socket is that record boundaries in data are predeatagram sockets closely model
the facilities found in many contemporary packet switched networks such as the Ethernet.

A raw socket provides users access to the underlying communication protocols which support socket
abstractions. Thessockets are normally datagram oriented, though their exact characteristics are depen-
dent on the interface provided by the protod®aw sockets are not intended for the general user; they have
been provided mainly for those interested in developing new communication protocols, or for gaining
access to some of the more esoteric facilities of an existing protbleluse of raw sockets is considered
in section 5.

A sequenced packsbcket is similar to a stream socket, with the exception that record boundaries
are preservedThis interface is provided only as part of the NS socket abstraction, and is very important in
most serious NS applicationSequenced-packet sockets allow the user to manipulate the SPP or IDP
headers on a packet or a group of packets either by writing a prototype header along with whatever data is
to be sent, or by specifying a default header to be used with all outgoing data, and allows the user to receive
the headers on incoming packet$e use of these options is considered in section 5.

Another potential socket type which has interesting properties iseliably deliveed message
socket. Theeliably delivered message socket has similar properties to a datagram socket, but with reliable
delivery There is currently no support for this type of socket, but a reliably delivered message protocol
similar to Xerox$ Packet Exchange Protocol (PEX) may be simulated at the user Mweeé information
on this topic can be found in section 5.

* See Internet Tansport Potocols Xerox System Integration Standard (XSIS)aeBIor more information.

This document is almost a necessity for one trying to write NS applications.

T In the UNIX domain, in fact, the semantics are identical and, as one might expect, pipes have been imple-
mented internally as simply a pair of connected stream sockets.

PS1:8-4 Advanced.3BSD IPC Titorial

0.2. Socketreation
To aeate a socket theocketsystem call is used:

s = 9cket(domain, type, protocol);

This call requests that the system create a socket in the spdoifiesdnand of the specifietype A par

ticular protocol may also be requestdélthe protocol is left unspecified (a value of 0), the system will
select an appropriate protocol from those protocols which comprise the communication domain and which
may be used to support the requested socket tfpe.user is returned a descriptor (a small integer num-
ber) which may be used in later system calls which operate on so@ketsilomain is specified as one of

the manifest constants defined in the filgsisocketdr Forthe UNIX domain the constant is AF_UNIX*;

for the Internet domain AF_INETBnd for the NS domain, AF_NSThe socket types are also defined in

this file and one of SOCK_STREAM, SOCK_DGRAM, SOCK WA SOCK_SEQRCKET must be
specified. © create a stream socket in the Internet domain the following call might be used:

s = cket(AF_INET SOCK_STREAM, 0);

This call would result in a stream socket being created with the TCP protocol providing the underlying
communication supporiTo aeate a datagram socket for on-machine use the call might be:

s = cket(AF_UNIX, SOCK_DGRAM, 0);

The default protocol (used when thmtocol argument to thesocketcall is 0) should be correct for
most every situationHowever it is possible to specify a protocol other than the default; this will be cov-
ered in section 5.

There are several reasons a socket call may Agilde from the rare occurrence of lack of memory
(ENOBUEFS), a socket request may fail due to a request for an unknown protocol (ERRSUPPOR),
or a request for a type of socket for which there is no supporting protocol (EFR®E).

0.3. Bindinglocal names

A socket is created without a naméntil a name is bound to a socket, processes have no way to ref-
erence it and, consequenthp messages may be received onGommunicating processes are bound by an
association In the Internet and NS domains, an association is composed of local and foreign addresses,
and local and foreign ports, while in the UNIX domain, an association is composed of local and foreign
path names (the phraséoreign pathnamé’'means a pathname created by a foreign process, not a path-
name on a foreign systemhn most domains, associations must be uniduethe Internet domain there
may never be duplicate <protocol, local address, local port, foreign address, foreign port>Ubdfbes.
domain sockets need not always be bound to a name, but when bound there may never be duplicate <proto-
col, local pathname, foreign pathname> tupl&€he pathnames may not refer to files already existing on
the system in 4.3; the situation may change in future releases.

Thebind system call allows a process to specify half of an association, <local address, local port> (or
<local pathname>), while ttednnectandacceptprimitives are used to complete a sockessociation.

In the Internet domain, binding names to sockets can be fairly comptetunatelyit is usually not
necessary to specifically bind an address and port number to a socket, becaoradbind sendcalls
will automatically bind an appropriate address if they are used with an unbound sbo&ebrocess of
binding names to NS sockets is similar in most ways to that of binding names to Internet sockets.

Thebind system call is used as follows:
bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting protdisol(s).
interpretation may vary from communication domain to communication domain (this is one of the proper
ties which comprise thédomain’). As mentioned, in the Internet domain names contain an Internet
address and port numbedS domain names contain an NS address and port nuriibéire UNIX domain,

* The manifest constants are named AF_whatever as they indicatadifress formatto use in interpreting
names.

Advanced 4.3BSD IPCukorial PS1:8-5

names contain a path name and a fagmilyich is always AF_UNIX.If one wanted to bind the name
“ /tmp/foo” to a UNIX domain socket, the following code would be used*:

#include <sys/un.h>
struct sockaddr_un addr;

strcpy(addisun_path, "/tmp/foo");

addrsun_family = AF_UNIX;

bind(s, (struct sockaddr *) &addstrlen(addrsun_path) +
sizeof (addsun_family));

Note that in determining the size of a UNIX domain address null bytes are not counted, whiclstidemhy

is used. In the current implementation of UNIX domain IPC under 4.3BSD, the file name referred to in
addrsun_paths created as a socket in the system file spdibe.caller must, therefore, have write permis-
sion in the directory wheraddrsun_paths to reside, and this file should be deleted by the caller when it is
no longer neededr-uture versions of 4BSD may not create this file.

In binding an Internet address things become more complic@iteslactual call is similar

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

but the selection of what to place in the addsessequires some discussioiVe will come back to the
problem of formulating Internet addresses in section 3 when the library routines used in name resolution
are discussed.

Binding an NS address to a socket is even mofieuif especially since the Internet library routines
do not work with NS hostname3he actual call is again similar:

#include <sys/types.h>
#include <netns/ns.h>

struct sockaddr_ns sns;

bind(s, (struct sockaddr *) &sns, sizeof (sns));

Again, discussion of what to place in‘'stfuct sockaddr_nsivill be deferred to section 3.

0.4. Connectionestablishment

Connection establishment is usually asymmetric, with one procesdiemt” and the other a
“server’. The serverwhen willing to ofer its advertised services, binds a socket to a well-known address
associated with the service and then passivigyens” on its socket.lIt is then possible for an unrelated
process to rendezvous with the servEne client requests services from the server by initiatingparec-
tion” to the serves socket. Onthe client side theonnectcall is used to initiate a connectiollsing the
UNIX domain, this might appear as,

struct sockaddr_un server;
connect(s, (struct sockaddr *)&serydrlen(servesun_path) +
sizeof (servesun_family));

while in the Internet domain,

* Note that, although the tendency here is to call‘@uklf” structure ‘sun”, doing so would cause problems if
the code were ever ported to a Sun workstation.

PS1:8-6 Advanced.3BSD IPC Titorial

struct sockaddr_in server;

connect(s, (struct sockaddr *)&serysreof (server));
and in the NS domain,

struct sockaddr_ns server;

connect(s, (struct sockaddr *)&serysreof (server));

whereserverin the example above would contain either the UNIX pathname, Internet address and port
number or NS adress and port number of the server to which the client process wishes toI§pleak.

client process cket is unbound at the time of the connect call, the system will automatically select and
bind a name to the socket if necessary; c.f. sectionThi is the usual way that local addresses are bound

to a socket.

An error is returned if the connection was unsuccessful (any name automatically bound by the sys-
tem, howeverremains). Otherwisghe socket is associated with the server and data transfer may begin.
Some of the more common errors returned when a connection attempt fails are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided there was no point in
retrying the connection attempt any moikhis usually occurs because the destination host is down,
or because problems in the network resulted in transmissions being lost.

ECONNREFUSED
The host refused service for some reasbis is usually due to a server process not being present at
the requested name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client host by the
underlying communication services.

ENETUNREACH or EHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no route to the
network or host is present), or because of status information returned by intermediate gateways or
switching nodes.Many times the status returned is notfisignt to distinguish a network being
down from a host being down, in which case the system indicates the entire network is unreachable.

For the server to receive a clientbnnection it must perform two steps after binding its sockbe
first is to indicate a willingness to listen for incoming connection requests:

listen(s, 5);

The second parameter to tligten call specifies the maximum number of outstanding connections which
may be queued awaiting acceptance by the server process; this number may be limited by the system.
Should a connection be requested while the queue is full, the connection will not be refused, but rather the
individual messages which comprise the request will be igndrai gives a harried server time to make

room in its pending connection queue while the client retries the connection relgadsthe connection

been returned with the ECONNREFUSED ertbe client would be unable to tell if the server was up or

not. Asit is now it is still possible to get the ETIMEDOUT error back, though this is unlikéhe back-

log figure supplied with the listen call is currently limited by the system to a maximum of 5 pending con-
nections on any one queug&his avoids the problem of processes hogging system resources by setting an
infinite backlog, then ignoring all connection requests.

With a socket marked as listening, a server at@gpta connection:
struct sockaddr_in from;
fromlen = sizeof (from);
newsock = accept(s, (struct sockaddr *)&from, &fromlen);

(For the UNIX domainfrom would be declared as siruct sockaddr_unand for the NS domainfrom

Advanced 4.3BSD IPCukorial PS1:8-7

would be declared asstruct sockaddr_nsut nothing diferent would need to be done as faframlenis
concerned. Irthe examples which followonly Internet routines will be discussedd) new descriptor is
returned on receipt of a connection (along with a new socKdt)e server wishes to find out who its client
is, it may supply a bédr for the client socket’'rame. Thevalue-result parameté&romlenis initialized by
the server to indicate how much space is associatedinwith then modified on return to reflect the true
size of the namelf the clients rame is not of interest, the second parameter may be a null pointer

Acceptnormally blocks. That is,acceptwill not return until a connection is available or the system
call is interrupted by a signal to the proceBsirther there is no way for a process to indicate it will accept
connections from only a specific individual, or individudlsis up to the user process to consider who the
connection is from and close down the connection if it does not wish to speak to the pifaibesserver
process wants to accept connections on more than one socket, or wants to avoid blocking on the accept call,
there are alternatives; they will be considered in section 5.

0.5. Datatransfer

With a connection established, data may begin to. fliwsend and receive data there are a number
of possible calls.With the peer entity at each end of a connection anchored, a user can send or receive a
message without specifying the peéis ane might expect, in this case, then the nomeed andwrite sys-
tem calls are usable,

write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

In addition toread andwrite, the new callsendandrecv may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While sendandrecv are virtually identical taead andwrite, the extraflagsamgument is importantThe
flags, defined irksys/socket.hymay be specified as a non-zero value if one or more of the following is
required:

[.

MSG_OOB send/receivaut of band data

MSG_PEEK lookat data without reading
MSG_DONTROUTE sendata without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately.consider
The option to have data sent without routing applied to the outgoing packets is currently used only by the
routing table management process, and is unlikely to be of interest to the casudhesability to pre-

view data is, howevernf interest. WherMSG_PEEK is specified with gecv call, any data present is
returned to the usebut treated as stilfunread’. Thatis, the nextead or recv call applied to the socket

will return the data previously previewed.

0.6. Discardingsockets
Once a socket is no longer of interest, it may be discarded by applgliogeto the descriptor
close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a close
takes place, the system will continue to attempt to transfer the ldateever after a fairly long period of

time, if the data is still undelivered, it will be discard&hould a user have no use for any pending data, it
may perform ashutdowron the socket prior to closing iThis call is of the form:

shutdown(s, how);

wherehowis 0 if the user is no longer interested in reading data, 1 if no more data will be sent, or 2 if no
data is to be sent or received.

PS1:8-8 Advanced.3BSD IPC Titorial

0.7. Connectionlessockets

To this point we have been concerned mostly with sockets which follow a connection oriented
model. Howeverthere is also support for connectionless interactions typical of the datagram facilities
found in contemporary packet switched networRsdatagram socket provides a symmetric interface to
data exchangeWhile processes are still likely to be client and ser@re is no requirement for connec-
tion establishmentinstead, each message includes the destination address.

Datagram sockets are created as beftfre particular local address is needed, bired operation
must precede the first data transmissi@therwise, the system will set the local address and/or port when
data is first sentTo ®nd data, theendtoprimitive is used,

sendto(s, buf, buflen, flags, (struct sockaddr *)&to, tolen);

Thes, buf, buflen and flagsparameters are used as befoféeto andtolenvalues are used to indicate the
address of the intended recipient of the messaljlben using an unreliable datagram interface, it is
unlikely that any errors will be reported to the send&hen information is present locally to recognize a
message that can not be delivered (for instance when a network is unreachable), the call will return -1 and
the global valuerrno will contain an error number

To receive messages on an unconnected datagram socketviinem primitive is provided:
recvfrom(s, buf, buflen, flags, (struct sockaddr *)&from, &fromlen);

Once again, th&omlenparameter is handled in a value-result fashion, initially containing the size of the
from buffer, and modified on return to indicate the actual size of the address from which the datagram was
received.

In addition to the two calls mentioned above, datagram sockets may also cseribetcall to asso-
ciate a socket with a specific destination addrésshis case, any data sent on the socket will automati-
cally be addressed to the connected ,aeer only data received from that peer will be delivered to the user
Only one connected address is permitted for each socket at one time; a second connect will change the des-
tination address, and a connect to a null address (family AF_UNSPEC) will disco@oaetect requests
on datagram sockets return immedigtelythis simply results in the system recording the eatdress
(as compared to a stream socket, where a connect request initiates establishment of an end to end connec-
tion). Acceptandlistenare not used with datagram sockets.

While a datagram socket socket is connected, errors from reeedtalls may be returned asyn-
chronously These errors may be reported on subsequent operations on the socket, or a special socket
option used witlgetsockoptSO_ERROR, may be used to interrogate the error st#tuselectfor reading
or writing will return true when an error indication has been receilée: next operation will return the
error, and the error status is cleare@ther of the less important details of datagram sockets are described
in section 5.

0.8. Input/Output multiplexing

One last facility often used in developing applications is the ability to multiplex i/o requests among
multiple sockets and/or filesThis is done using theelectcall:

#include <sys/time.h>
#include <sys/types.h>

fd_set readmask, writemask, exceptmask;
struct timeval timeout;

select(nfds, &readmask, &writemask, &exceptmask, &timeout);

Selectakes as guments pointers to three sets, one for the set of file descriptors for which the caller wishes
to be able to read data on, one for those descriptors to which data is to be written, and one for which excep-
tional conditions are pending; out-of-band data is the only exceptional condition currently implemented by
the socket If the user is not interested in certain conditions (i.e., read, write, or exceptions), the

Advanced 4.3BSD IPCukorial PS1:8-9

corresponding gument to theelectshould be a null pointer

Each set is actually a structure containing an array of long integer bit masks; the size of the array is
set by the definition FD_SETSIZE he array is be long enough to hold one bit for each of FD_SETSIZE
file descriptors.

The macros FD_SET, &mash and FD_CLR{d, &mask have been provided for adding and
removing file descriptoffd in the setmask The set should be zeroed before use, and the macro
FD_ZEROg&mask has been provided to clear the seisk The parametenfdsin theselectcall specifies
the range of file descriptor§.e. one plus the value of thedaist descriptor) to be examined in a set.

A timeout value may be specified if the selection is not to last more than a predetermined period of
time. If the fields intimeoutare set to 0, the selection takes the form pbl§ returning immediately If
the last parameter is a null pointdre selection will block indefinitely* Selectnormally returns the num-
ber of file descriptors selected; if teelectcall returns due to the timeout expiring, then the value O is
returned. Iftheselectterminates because of an error or interruption, a -1 is returned with the error number
in errno, and with the file descriptor masks unchanged.

Assuming a successful return, the three sets will indicate which file descriptors are ready to be read
from, written to, or have exceptional conditions pendiiige status of a file descriptor in a select mask
may be tested with theD_ISSET(fd, &maskjnacro, which returns a non-zero valuddifis a member of
the semask and O if it is not.

To determine if there are connections waiting on a socket to be used veiticepicall, selectcan be
used, followed by &D_ISSET(fd, &masknacro to check for read readiness on the appropriate sdtket.
FD_ISSETreturns a non-zero value, indicating permission to read, then a connection is pending on the
socket.

As an example, to read data from two sockelgnds2as it is available from each and with a one-
second timeout, the following code might be used:

* To be nore specific, a return takes place only when a descriptor is selectable, or when a signal is received by
the callerinterrupting the system call.

PS1:8-10 Advanced.3BSD IPC Titorial

#include <sys/time.h>
#include <sys/types.h>

fd_set read_template;
struct timeval wait;

for (;;) {
wait.tv_sec = 1, /* one second */
wait.tv_usec = 0;

FD_ZERO(&read_template);

FD_SET(s1, &read_template);
FD_SET(s2, &read_template);

nb = select(FD_SETSIZE, &read_template, (fd_set *) 0, (fd_set *) 0, &wait);
if (nb <=0) {

An ermor occuried during theselect or

theselecttimed out.

}

if (FD_ISSET(s1, &read_template)) {
Socket #1 isaady to beead fom.

}

if (FD_ISSET(s2, &read_template)) {
Socket #2 isaady to beead fom.

}
}

In 4.2, the aguments teselectwere pointers to integers instead of pointerédtses. Thistype of
call will still work as long as the number of file descriptors being examined is less than the number of bits
in an integer; howevethe methods illustrated above should be used in all current programs.

Selectprovides a synchronous multiplexing schemfesynchronous notification of output comple-
tion, input availability and exceptional conditions is possible through use of the SIGIO and SIGURG sig-
nals described in section 5.

Advanced 4.3BSD IPCukorial PS1:8-1

3. NETWORK LIBRAR Y ROUTINES

The discussion in section 2 indicated the possible need to locate and construct network addresses
when using the interprocess communication facilities in a distributed environiferatd in this task a
number of routines have been added to the standard C run-time. librdinys section we will consider the
new routines provided to manipulate network addresgésile the 4.3BSD networking facilities support
both the DARR standard Internet protocols and the Xerox NS protocols, most of the routines presented in
this section do not apply to the NS domaliimless otherwise stated, it should be assumed that the routines
presented in this section do not apply to the NS domain.

Locating a service on a remote host requires many levels of mapping before client and server may
communicate. Aservice is assigned a name which is intended for human consumptiorithe.¢pgin
serveron host monet’ This name, and the name of the peer host, must then be translated into network
addresseswvhich are not necessarily suitable for human consumptamally, the address must then used
in locating a physicdbcationandrouteto the service.The specifics of these three mappings are likely to
vary between network architecturelSor instance, it is desirable for a network to not require hosts to be
named in such a way that their physical location is known by the client Inggtad, underlying services
in the network may discover the actual location of the host at the time a client host wishes to communicate.
This ability to have hosts named in a location independent manner may induce overhead in connection
establishment, as a discovery process must take place, but allows a host to be physically mobile without
requiring it to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network names to net-
work numbers, protocol names to protocol numbers, and service names to port numbers and the appropriate
protocol to use in communicating with the server proc&se file netdb.l» must be included when using
any of these routines.

3.1. Hostnames
An Internet host name to address mapping is represented bystemtstructure:

struct hosten{

char *h_name,; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type (e.g., AF_INET) */
int h_length; /* length of address */
char **h_addr_list; /* list of addresses, null terminated */
¥
#define h_addrh_addr_list[0] [*first address, network byte order */

The routinegethostbynan{8N) takes an Internet host name and returhestentstructure, while the rou-
tine gethostbyaddBN) maps Internet host addresses inbmstentstructure.

The oficial name of the host and its public aliases are returned by these routines, along with the
address type (family) and a null terminated list of variable length addrésslist of addresses is required
because it is possible for a host to have many addresses, all having the sam&hetmaddrdefinition
is provided for backward compatibiljtand is defined to be the first address in the list of addresses in the
hostentstructure.

The database for these calls is provided either by thé&efdéhostghostq5)), or by use of a name-
servernamed8). Becaus®f the diferences in these databases and their access protocols, the information
returned may diér. When using the host table version gdthostbynameonly one address will be
returned, but all listed aliases will be includéithe nameserver version may return alternate addresses, but
will not provide any aliases other than one given garaent.

Unlike Internet names, NS names are always mapped into host addresses by the use of a standard NS
Clearinghouse servigea dstributed name and authentication serv&he algorithms for mapping NS

PS1:8-12 Advanced.3BSD IPC Titorial

names to addresses via a Clearinghouse are rather complicated, and the routines are not part of the standard
libraries. Theusercontributed Courier (Xerox remote procedure call protocol) compiler contains routines

to accomplish this mapping; see the documentation and examples provided therein for more infolimation.

is expected that almost all software that has to communicate using NS will need to use the facilities of the
Courier compiler

An NS host address is represented by the following:

union ns_host {
u_char c_host[6];
u_short s_host[3];
¥

union ns_net {
u_char c_net[4];
u_short s_net[2];

h

struct ns_addr {
union ns_net x_net;
union ns_host x_host;
u_short X_port;

%

The following code fragment inserts a known NS address ing addr

Advanced 4.3BSD IPCukorial PS1:8-13

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>

u_long netnum;
struct sockaddr_ns dst;

bzero((char *)&dst, sizeof(dst));

/*

* There is no convenient way to assign a long

* integer to a'inion ns_net’at present; in

* the future, something will hopefully be provided,
* but this is the portable way to go for now

* The network number below is the one for the NS net
* that the desired host (gyre) is on.

*/

netnum = htonl(2266);

dst.sns_addt_net = *(union ns_net *) &netnum;
dst.sns_family = AF_NS;

/*

*host 2.7.1.0.2a.18 == "gyre:Computer Science:UofMaryland”
*

dst.sns_addt_host.c_host[0] = 0x02;
dst.sns_addt_host.c_host[1] = 0x07;
dst.sns_addt_host.c_host[2] = 0x01;
dst.sns_addt_host.c_host[3] = 0x00;
dst.sns_addt_host.c_host[4] = 0x2a;
dst.sns_addt_host.c_host[5] = 0x18;

dst.sns_addt_port = htons(75);

3.2. Networknames
As for host names, routines for mapping network names to numbers, and back, are privied.
routines return aetentstructure:
/*
* Assumption here is that a network number
*fits in 32 bits -- probably a poor one.

*/
struct netenf

char *n_name; /* official name of net */

char **n_aliases; /* alias list */

int n_addrtype; /* net address type */

int n_net; /* network numberhost byte order */
%

The routinesggetnetbynanm@N), getnetbynumbéBN), andgetneternBN) are the network counterparts to
the host routines described abovée routines extract their information fraetc/networks

NS network numbers are determined either by asking your local Xerox Network Administrator (and
hardcoding the information into your code), or by querying the Clearinghouse for addidssesternet-
work router is the only process that needs to manipulate network numbers on a regular basis; if a process
wishes to communicate with a machine, it should ask the Clearinghouse for that rseachiress (which
will include the net number).

PS1:8-14 Advanced.3BSD IPC Titorial

3.3. Pmotocol names

For protocols, which are defined fetc/piotocols the protoentstructure defines the protocol-name
mapping used with the routingstpiotobynam&N), getpiotobynumbeBN), andgetprotoen{3N):

struct protoen{

char *p_name; [* official protocol name */
char **p_aliases; /* alias list */
int p_proto; [* protocol number */

h

In the NS domain, protocols are indicated by the "client type" field of a IDP helddegmrotocol
database exists; see section 5 for more information.

3.4. Servicenames

Information regarding services is a bit more complicatedervice is expected to reside at a specific
“ port” and employ a particular communication protoc®his view is consistent with the Internet domain,
but inconsistent with other network architectur€sirther a rvice may reside on multiple port#. this
occurs, the higher level library routines will have to be bypassed or exteBdedces available are con-
tained in the fildetc/services A service mapping is described by serventstructure,

struct servenf

char *s _name; [* official service name */

char **s aliases; /* alias list */

int S_port; [* port numbey network byte order */
char *s_proto; [* protocol to use */

¥
The routinegetservbynan(8N) maps service names to a servent structure by specifying a service name
and, optionallya qualifying protocol. Thus the call

sp = getservbyname("telnet", (char *) 0);

returns the service specification for a telnet server using any protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet server which uses the TCP protoduod. routineggetservbypofBN) andgetser
ven(3N) are also providedThe getservbyportoutine has an interface similar to that providedgey-
servbynamgean optional protocol name may be specified to qualify lookups.

In the NS domain, services are handled by a central dispatcher provided as part of the Courier remote
procedure call facilities Again, the reader is referred to the Courier compiler documentation and to the
Xerox standard* for further details.

3.5. Miscellaneous

With the support routines described above, an Internet application program should rarely have to deal
directly with addressesThis allows services to be developed as much as possible in a network independent
fashion. lItis clear however that puging all network dependencies is veryfidiflt. Solong as the user is
required to supply network addresses when naming services and sockets there will always some network
dependency in a prograntor example, the normal code included in client programs, such as the remote
login program, is of the form shown in Figure (T.his example will be considered in more detail in section
4)

If we wanted to make the remote login program independent of the Internet protocols and addressing
scheme we would be forced to add a layer of routines which masked the network dependent aspects from
the mainstream login codd-or the current facilities available in the system this does not appear to be
worthwhile.

* Courier: The Remote Bcedue Call Protocol XSIS 03812.

Advanced 4.3BSD IPCukorial PS1:8-15

Aside from the address-related data base routines, there are several other routines available in the
run-time library which are of interest to userBhese are intended mostly to simplify manipulation of
names and addresseBable 1 summarizes the routines for manipulating variable length byte strings and
handling byte swapping of network addresses and values.

box;

1

1.

Call Synopsis

bcmp(sl, s2, n) compare byte-strings; 0 if same, not O otherwise
bcopy(s1, s2, n) copy n bytes from sl to s2

bzero(base, n) zero-fill n bytes starting at base

htonl(val) converB2-bit quantity from host to network byte order
htons(val) convert6-bit quantity from host to network byte order
ntohl(val) converB2-bit quantity from network to host byte order
ntohs(val) convert6-bit quantity from network to host byte order

Table 1. C run-time routines.

The byte swapping routines are provided because the operating system expects addresses to be sup-
plied in network order On some architectures, such as th&Xy host byte ordering is diérent than net-
work byte ordering.Consequentlyprograms are sometimes required to byte swap quantifies.library
routines which return network addresses provide them in network order so that they may simply be copied
into the structures provided to the systehmis implies users should encounter the byte swapping problem
only wheninterpreting network addressed-or example, if an Internet port is to be printed out the follow-
ing code would be required:

printf("port number %d\n", ntohs(sp->s_port));

On machines where unneeded these routines are defined as null macros.

PS1:8-16 Advanced.3BSD IPC Titorial

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(agc, agv)
int agc;
char *agv[];

struct sockaddr_in server;
struct servent *sp;
struct hostent *hp;
ints;
sp = getservbyname("login", "tcp");
if (sp == NULL) {
fprintf(stderr "rlogin: tcp/login: unknown service\n");
exit(1);
}
hp = gethostbyname@r[1]);
if (hp == NULL) {
fprintf(stderr "rlogin: %s: unknown host\n", gw[1]);
exit(2);
}
bzero((char *)&serverizeof (server));
bcopy(hp->h_addi(char *)&serversin_addrhp->h_length);
serversin_family = hp->h_addrtype;
serversin_port = sp->s_port;
s = 9cket(AF_INET SOCK_STREAM, 0);
if (s<0){
perror(“rlogin: socket");
exit(3);
}

/* Connect does the bind() for us */
if (connect(s, (char *)&serveszeof (server)) < 0) {

perror(“rlogin: connect");
exit(5);

Figure 1. Remote login client code.

Advanced 4.3BSD IPCukorial PS1:8-17

4. CLIENT/SERVER MODEL

The most commonly used paradigm in constructing distributed applications is the client/server
model. Inthis scheme client applications request services from a server protesémplies an asymme-
try in establishing communication between the client and server which has been examined in séttion 2.
this section we will look more closely at the interactions between client and, sexeronsider some of
the problems in developing client and server applications.

The client and server require a well known set of conventions before service may be rendered (and
accepted). Thiset of conventions comprises a protocol which must be implemented at both ends of a con-
nection. Dependingn the situation, the protocol may be symmetric or asymmetria. symmetric proto-
col, either side may play the master or slave rolesan asymmetric protocol, one side is immutably recog-
nized as the mastewith the other as the slavén example of a symmetric protocol is the TELNET proto-
col used in the Internet for remote terminal emulatidn.example of an asymmetric protocol is the Inter
net file transfer protocol, FTANo matter whether the specific protocol used in obtaining a service is sym-
metric or asymmetric, when accessing a service there'dfiemt process’and a ‘server process’ We
will first consider the properties of server processes, then client processes.

A server process normally listens at a well known address for service requkatsis, the server
process remains dormant until a connection is requested by asabmmiection to the serveraddress. At
such a time the server proce'sgakes up’ and services the client, performing whatever appropriate actions
the client requests of it.

Alternative schemes which use a service server may be used to eliminate a flock of server processes
clogging the system while remaining dormant most of the tif@: Internet servers in 4.3BSD, this
scheme has been implemented ivietd the so called'internet supesserver’ Inetdlistens at a variety of
ports, determined at start-up by reading a configurationileen a connection is requested to a port on
which inetd is listening,inetd executes the appropriate server program to handle the clWéitih this
method, clients are unaware that an intermediary suittettthas played any part in the connectidnetd
will be described in more detail in section 5.

A similar alternative scheme is used by most Xerox servitegeneral, the Courier dispatch pro-
cess (if used) accepts connections from processes requesting services of some sort orTarothient
processes request a particular <program numieesion numberprocedure number> triplelf the dis-
patcher knows of such a program, it is started to handle the request; if not, an error is reported to the client.
In this way only one port is required to service agarvariety of diferent requestsAgain, the Courier
facilities are not available without the use and installation of the Courier compiierinformation pre-
sented in this section applies only to NS clients and services that do not use Courier

4.1. Servers

In 4.3BSD most servers are accessed at well known Internet addresses or UNIX domainFeames.
example, the remote login serigamain loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:
sp = getservbyname("login", "tcp");
if (sp == NULL) {
fprintf(stdert "rlogind: tcp/login: unknown service\n");
exit(1);
}

The result of thgetservbynameall is used in later portions of the code to define the Internet port at which
it listens for service requests (indicated by a connection).

PS1:8-18 Advanced.3BSD IPC Titorial

main(agc, agv)
int amgc;
char *agv[];

int f;
struct sockaddr_in from;
struct servent *sp;

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stdert "rlogind: tcp/login: unknown service\n");
exit(1);

}

#ifndef DEBUG
/* Disassociate server from controlling terminal */

#endﬁ“
sin.sin_port = sp->s_port; /* Restricted port -- see section 5 */
f: socket(AF_INET SOCK_STREAM, 0);
illél(bind(f, (struct sockaddr *) &sin, sizeof (sin)) < 0) {

}

iigten(f, 5);
for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *) &from, &len);
if (g <0){
if (errno I= EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

if (fork() == 0) {
close(f);
doit(g, &from);

}

close(q);

Figure 2. Remote login server

Advanced 4.3BSD IPCukorial PS1:8-19

Step two is to disassociate the server from the controlling terminal of its invoker:

for (i=0;i<3; ++i)
close(i);

open("/", O_RDONV);
dup2(0, 1);
dup2(0, 2);

i = open("/dev/tty", O_RDWR);
if (i >=0) {
ioctl(i, TIOCNOTTY, 0);
close(i);

}

This step is important as the server will likely not want to receive signals delivered to the process group of
the controlling terminal.Note, howeverthat once a server has disassociated itself it can no longer send
reports of errors to a terminal, and must log errorsysiog

Once a server has established a pristine environment, it creates a socket and begins accepting service
requests. Theind call is required to insure the server listens at its expected locadtishould be noted
that the remote login server listens at a restricted port nyarttemust therefore be run with a usgof
root. Thisconcept of a'festricted port numbér s 8BSD specific, and is covered in section 5.

The main body of the loop is fairly simple:

for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len);
if (9<0){
if (errno = EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

if (fork() == 0) { /* Child */
close(f);
doit(g, &from);

}

close(q); [*Parent */

}

An acceptcall blocks the server until a client requests servidas call could return a failure status if the

call is interrupted by a signal such as SIGCHLD (to be discussed in sectidhésgfore, the return value

from acceptis checked to insure a connection has actually been established, and an error report is logged
via syslogif an error has occurred.

With a connection in hand, the server then forks a child process and invokes the main body of the
remote login protocol processinflote how the socket used by the parent for queuing connection requests
is closed in the child, while the socket created as a result atteptis closed in the pareniThe address
of the client is also handed tHeit routine because it requires it in authenticating clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figubmé.can see the separate,
asymmetric roles of the client and server clearly in the cdde server is a passive entitistening for
client connections, while the client process is an active emtitiating a connection when invoked.

Let us consider more closely the steps taken by the client remote login praseashe server pro-
cess, the first step is to locate the service definition for a remote login:

PS1:8-20 Advanced.3BSD IPC Titorial

sp = getservbyname("login", "tcp");

if (sp == NULL) {
fprintf(stdert "rlogin: tcp/login: unknown service\n");
exit(1);

}

Next the destination host is looked up witgethostbynameall:

hp = gethostbyname@r[1]);

if (hp == NULL) {
fprintf(stdert "rlogin: %s: unknown host\n", gw[1]);
exit(2);

}

With this accomplished, all that is required is to establish a connection to the server at the requested host
and start up the remote login protocdhe address bfér is cleared, then filled in with the Internet address
of the foreign host and the port number at which the login process resides on the foreign host:

bzero((char *)&serverizeof (server));
bcopy(hp->h_addi(char *) &serversin_addrhp->h_length);
serversin_family = hp->h_addrtype;

serversin_port = sp->s_port;

A socket is created, and a connection initiatBihte thatconnectimplicitly performs abind call, sincesis
unbound.

s = 9cket(hp->h_addrtype, SOCK_STREAM, 0);

if (s<0){
perror(“rlogin: socket");
exit(3);

}

if (connect(s, (struct sockaddr *) &serydreof (server)) < 0) {
perror(“rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionlesservers

While connection-based services are the norm, some services are based on the use of datagram sock-
ets. Onejn particular is the ‘rwho” service which provides users with status information for hosts con-
nected to a local area networkhis service, while predicated on the abilitybroadcastinformation to all
hosts connected to a particular network, is of interest as an example usage of datagram sockets.

A user on any machine running the rwho server may find out the current status of a machine with the
ruptimg1) program.The output generated is illustrated in Figure 3.

Status information for each host is periodically broadcast by rwho server processes on each machine.
The same server process also receives the status information and uses it to update a Taimdassbhase
is then interpreted to generate the status information for each$ersters operate autonomouysigupled
only by the local network and its broadcast capabilities.

Note that the use of broadcast for such a task is fairlfidreeft, as all hosts must process each mes-
sage, whether or not using an rwho serkémless such a service is 8aiently universal and is frequently
used, the expense of periodic broadcasts outweighs the simplicity

The rwho serverin a smplified form, is pictured in Figure 4There are two separate tasks-per
formed by the serverThe first task is to act as a receiver of status information broadcast by other hosts on
the network. This job is carried out in the main loop of the progrdPackets received at the rwho port are

Advanced 4.3BSD IPCukorial PS1:8-21

Irllin.

arpa up 9:45, Susers, load 1.15, 1.39, 1.31

cad up 2+12:04, 8users, load 4.67, 5.13, 4.59
calderup 10:10, Ousers, load 0.27, 0.15, 0.14

dali up 2+06:28, Qsers, load 1.04, 1.20, 1.65
degasup 25+09:48, Qusers, load 1.49, 1.43, 1.41

ear up 5+00:05, CQusers, load 1.51, 1.54, 1.56
ernie down0:24

esvax dowrl7:04

ingresdowr0:26

kim up 3+09:16, 8users, load 2.03, 2.46, 31
matisse up 3+06:18, CQusers, load 0.03, 0.03, 0.05
medea up 3+09:39, sers, load 0.35, 0.37, 0.50
merlin down19+15:37

miro up 1+07:20, 7users, load 459, 3.28, 2.12
monet up 1+00:43, 2sers, load 0.22, 0.09, 0.07
oz downl6:09

statvax up 2+15:57, users, load 1.52, 1.81, 1.86
ucbvax up 9:34, 2users, load 6.08, 5.16, 3.28

Figure 3. ruptime output.

interrogated to insure they've been sent by another rwho server process, then are time stamped with their
arrival time and used to update a file indicating the status of the\Wbsn a host has not been heard from

for an extended period of time, the database interpretation routines assume the host is down and indicate
such on the status reporfghis algorithm is prone to error as a server may be down while a host is actually
up, but serves our current needs.

The second task performed by the server is to supply information regarding the status of its host.
This involves periodically acquiring system status information, packaging it up in a message and broadcast-
ing it on the local network for other rwho servers to h&dre supply function is triggered by a timer and
runs of a dgnal. Locatingthe system status information is somewhat involved, but unintere®iecjd-
ing where to transmit the resultant packet is somewhat problematical, however

Status information must be broadcast on the local netwieok.networks which do not support the
notion of broadcast another scheme must be used to simulate or replace broadoastipgssibility is to
enumerate the known neighbors (based on the status messages received from other rwhoTdgsyers).
unfortunatelyrequires some bootstrapping information, for a server will have no idea what machines are its
neighbors until it receives status messages from thEnerefore, if all machines on a net are freshly
booted, no machine will have any known neighbors and thus never receive, or send, any status information.
This is the identical problem faced by the routing table management process in propagating routing status
information. Thestandard solution, unsatisfactory as it may be, is to inform one or more servers of known
neighbors and request that they always communicate with these neiglileash server has at least one
neighbor supplied to it, status information may then propagate through a neighbor to hosts which are not
(possibly) directly neighborslf the server is able to support networks which provide a broadcast capabil-
ity, as well as those which do not, then networks with an arbitrary topology may share status information*.

It is important that software operating in a distributed environment not have any site-dependent infor
mation compiled into it.This would require a separate copy of the server at each host and make mainte-
nance a severe headachke3BSD attempts to isolate host-specific information from applications by pro-
viding system calls which return the necessary informatightechanism exists, in the form of artl
call, for finding the collection of networks to which a host is directly connec¢tadher a local network

* One must, howevebe mncerned aboutlbops”. Thatis, if a host is connected to multiple networks, it will
receive status information from itselfhis can lead to an endless, wasteful, exchange of information.

* An example of such a system call is tpethostnam@) call which returns the host*official” name.

PS1:8-22 Advanced.3BSD IPC Titorial

main()

{

sp = getservbyname("who", "udp");

net = getnetbyname("localnet");

sin.sin_addr = inet_makeaddr(INADDR_ANNét);
sin.sin_port = sp->s_port;

s = cket(AF_INET SOCK_DGRAM, 0);

on=1,;

if (setsockopt(s, SOL_SOCKEBO_ BROADCAST &on, sizeof(on)) < 0) {
syslog(LOG_ERR, "setsockopt SO_BROADCASEM");
exit(1);

}

bind(s, (struct sockaddr *) &sin, sizeof (sin));

signal(SIGALRM, onalrm);
onalrm();
for (;;) {
struct whod wd;
int cc, whod, len = sizeof (from);

cc = recvfrom(s, (char *)&wd, sizeof (struct whod), O,
(struct sockaddr *)&from, &len);
if (cc <=0) {
if (cc <0 && errno !'= EINTR)
syslog(LOG_ERR, "rwhod: recv: %m");
continue;
}
if (from.sin_port = sp->s_port) {
syslog(LOG_ERR, "rwhod: %d: bad from port",
ntohs(from.sin_port));
continue;

}

if (Iverify(wd.wd_hostname)) {
syslog(LOG_ERR, "rwhod: malformed host name from %x",
ntohl(from.sin_adds_addr));
continue;
}
(void) sprintf(path, "%s/whod.%s" VRHODIR, wd.wd_hostname);
whod = open(path, O_ WRONL O _CREAT | O_TRUNC, 0666);

(void) time(&wd.wd_recvtime);

(void) write(whod, (char *)&wd, cc);
(void) close(whod);

Figure 4.rwho server

broadcasting mechanism has been implemented at the socketGewetining these two features allows a
process to broadcast on any directly connected local network which supports the notion of broadcasting in a

Advanced 4.3BSD IPCukorial PS1:8-23

site independent mannethis allows 4.3BSD to solve the problem of deciding how to propagate status
information in the case ofvho, or more generally in broadcasting: Such status information is broadcast to
connected networks at the socket level, where the connected networks have been obtained via the appropri-
ateioctl calls. Thespecifics of such broadcastings are complex, howendmwill be covered in section 5.

PS1:8-24 Advanced.3BSD IPC Titorial

5. ADVANCED TOPICS

A number of facilities have yet to be discuss&wr most users of the IPC the mechanisms already
described will sufce in constructing distributed applicationdowever others will find the need to utilize
some of the features which we consider in this section.

5.1. Outof band data

The stream socket abstraction includes the notiotowef 6f band” data. Outof band data is a logi-
cally independent transmission channel associated with each pair of connected streamQ@utkétsand
data is delivered to the user independently of normal ddta.abstraction defines that the out of band data
facilities must support the reliable delivery of at least one out of band message at &hisnmessage
may contain at least one byte of data, and at least one message may be pending delivery to the user at any
one time. For communications protocols which support only in-band signaling (i.e. deatuwlata is deliv-
ered in sequence with the normal data), the system normally extracts the data from the normal data stream
and stores it separatelyhis allows users to choose between receiving thentrdata in order and receiv-
ing it out of sequence without having to faufall the intervening datalt is possible to ‘peek” (via
MSG_PEEK) at out of band dat#. the socket has a process group, a SIGURG signal is generated when
the protocol is notified of its existencA. process can set the process group or process id to be informed by
the SIGURG signal via the appropridtatl call, as described below for SIGIQf multiple sockets may
have out of band data awaiting delivemyselectcall for exceptional conditions may be used to determine
those sockets with such data pendihgeither the signal nor the select indicate the actual arrival of the out-
of-band data, but only notification that it is pending.

In addition to the information passed, a logical mark is placed in the data stream to indicate the point
at which the out of band data was sefihe remote login and remote shell applications use this facility to
propagate signals between client and server proce®¥gesn a signal flushs any pending output from the
remote process(es), all data up to the mark in the data stream is discarded.

To snd an out of band message the MSG_OOB flag is suppliedandar sendtocalls, while to
receive out of band data MSG_OOB should be indicated when performengf@m or recv call. To find
out if the read pointer is currently pointing at the mark in the data stream, the BUA®X ioctl is pro-
vided:

ioctl(s, SIOCAMARK, &yes);

If yesis a 1 on return, the next read will return data after the nfatkerwise (assuming out of band data

has arrived), the next read will provide data sent by the client prior to transmission of the out of band sig-
nal. Theroutine used in the remote login process to flush output on receipt of an interrupt or quit signal is
shown in Figure 51t reads the normal data up to the mark (to discard it), then reads the out-of-band byte.

A process may also read or peek at the out-of-band data without first reading up to th&hisaik.
more dificult when the underlying protocol delivers thgemt data in-band with the normal data, and only
sends notification of its presence ahead of time (e.g., the TCP protocol used to implement streams in the
Internet domain).With such protocols, the out-of-band byte may not yet have arrived wigemia done
with the MSG_OOB flag.In that case, the call will return an error of EWOULDBLOCWorse, there
may be enough in-band data in the inpufdruthat normal flow control prevents the peer from sending the
urgent data until the bfdr is cleared.The process must then read enough of the queued data that the
urgent data may be delivered.

Certain programs that use multiple bytes afemt data and must handle multiplgemt signals (e.g.,
telnet(1C)) need to retain the position ofgent data within the streanThis treatment is available as a
socket-level option, SO_OOBINLINE; ssetsockopf2) for usage.With this option, the position of gent
data (the ‘mark”) is retained, but the gent data immediately follows the mark within the normal data
stream returned without the MSG_OOB flageception of multiple @ent indications causes the mark to
move, but no out-of-band data are lost.

Advanced 4.3BSD IPCukorial PS1:8-25

#include <sys/ioctl.h>
#include <sysl/file.h>

00b()
{

int out = FWRITE, mark;
char waste[BUFSIZ];

/* flush local terminal output */
ioctl(1, TIOCFLUSH, (char *)&out);
for (;;) {
if (ioctl(rem, SIOCAMARK, &mark) < 0) {
perror(“ioctl");

break;
}
if (mark)
break;

(void) read(rem, waste, sizeof (waste));
}
if (recv(rem, &mark, 1, MSG_OOB) < 0) {
perror(“recv");

Figure 5. Flushing terminal I/O on receipt of out of band data.

5.2. Non-BlockingSockets

It is occasionally convenient to make use of sockets which do not block; that is, I/O requests which
cannot complete immediately and would therefore cause the process to be suspended awaiting completion
are not executed, and an error code is retur@tte a socket has been created visstitketcall, it may
be marked as non-blocking yntl as follows:

#include <fcntl.h>
int s
s = ocket(AF_INET SOCK_STREAM, 0);

if (fentl(s, F_SETFL, FNDELA) < 0)
perror(*fcntl F_SETFL, FNDELX");
exit(1);

When performing non-blocking I/O on sockets, one must be careful to check for the error
EWOULDBLOCK (stored in the global variab&rno), which occurs when an operation would normally
block, but the socket it was performed on is marked as non-blockingarticular accept connect send
recv, read, and write can all return EWOULDBLOCK, and processes should be prepared to deal with such
return codes.If an operation such assendcannot be done in its entiretyut partial writes are sensible
(for example, when using a stream socket), the data that can be sent immediately will be processed, and the
return value will indicate the amount actually sent.

PS1:8-26 Advanced.3BSD IPC Titorial

5.3. Interrupt driven socket I/O

The SIGIO signal allows a process to be notified via a signal when a socket (or more genéeally
descriptor) has data waiting to be readdse of the SIGIO facility requires three stepdrst, the process
must set up a SIGIO signal handler by use okthealor sigveccalls. Secondt must set the process id or
process group id which is to receive notification of pending input to its own process id, or the process group
id of its process group (note that the default process group of a socket is grou hiexdg.accomplished
by use of arfcntl call. Third,it must enable asynchronous notification of pending I/O requests with another
fentl call. Samplecode to allow a given process to receive information on pending I/O requests as they
occur for a socketis given in Figure 6.With the addition of a handler for SIGURG, this code can also be
used to prepare for receipt of SIGURG signals.

#include <fcntl.h>

|nt io_handler();

s.i.énaI(SIGIO, io_handler);

/* Set the process receiving SIGIO/SIGURG signals to us */

if (fentl(s, F_SETOWN, getpid()) < 0) {
perror(“fcntl F_SEDWN");
exit(1);

}

/* Allow receipt of asynchronous 1/O signals */

if (fentl(s, F_SETFL, RSYNC) < 0) {
perror(*fcntl F_SETFL, ASYNC");
exit(1);

Figure 6. Use of asynchronous notification of 1/0O requests.

5.4. Signalsand process goups

Due to the existence of the SIGURG and SIGIO signals each socket has an associated process num-
ber, just as is done for terminal3his value is initialized to zero, but may be redefined at a later time with
the F_SEOWN fcntl, such as was done in the code above for SIGTO.%t the socke$ process id for
signals, positive guments should be given to tfentl call. To set the socke$ process group for signals,
negative aguments should be passedotl. Note that the process number indicates either the associated
process id or the associated process group; it is impossible to specify both at the saresitimiar fcntl,
F_GETOWN, is available for determining the current process number of a socket.

Another signal which is useful when constructing server processes is SIGCHLB.signal is
delivered to a process when any child processes have changed\&tatelly servers use the signal to
“reap’ child processes that have exited without explicitly awaiting their termination or periodic polling for
exit status.For example, the remote login server loop shown in Figure 2 may be augmented as shown in
Figure 7.

If the parent server process fails to reap its children,ge lanmber of'’zombie” processes may be
created.

5.5. Pseudderminals

Many programs will not function properly without a terminal for standard input and ou$jnte
sockets do not provide the semantics of terminals, it is often necessary to have a process communicating
over the network do so throughpaeudo-terminal A pseudo- terminal is actually a pair of devices, master

Advanced 4.3BSD IPCukorial PS1:8-27

int reaper();

signal(SIGCHLD, reaper);
listen(f, 5);
for (;;) {

int g, len = sizeof (from);

g = accept(f, (struct sockaddr *)&from, &len,);
if (g<0){
if (errno I= EINTR)
syslog(LOG_ERR, "rlogind: accept: %m");
continue;

}

#include <wait.h>
reaper()

{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)

Figure 7. Use of the SIGCHLD signal.

and slave, which allow a process to serve as an active agent in communication between processes and
users. Datavritten on the slave side of a pseudo-terminal is supplied as input to a process reading from the
master side, while data written on the master side are processed as terminal input for the ties/eay

the process manipulating the master side of the pseudo-terminal has control over the information read and
written on the slave side as if it were manipulating the keyboard and reading the screen on a real terminal.
The purpose of this abstraction is to preserve terminal semantics over a network connection— that is, the
slave side appears as a normal terminal to any process reading from or writing to it.

For example, the remote login server uses pseudo-terminals for remote login se&giees.log-
ging in to a machine across the network is provided a shell with a slave pseudo-terminal as standard input,
output, and errorThe server process then handles the communication between the programs invoked by
the remote shell and the u'selocal client processWhen a user sends a character that generates an inter
rupt on the remote machine that flushes terminal output, the pseudo-terminal generates a control message
for the server procesd he server then sends an out of band message to the client process to signal a flush
of data at the real terminal and on the intervening dateredfin the network.

Under 4.3BSD, the name of the slave side of a pseudo-terminal is of th&l&wifttyxy wherex is a
single letter starting at ‘p’ and continuing to ‘t is a hexadecimal digit (i.e., a single character in the
range 0 through 9 or ‘a’ through’)f The master side of a pseudo-terminaldgv/ptyxy wherex andy
correspond to the slave side of the pseudo-terminal.

In general, the method of obtaining a pair of master and slave pseudo-terminals is to find a pseudo-
terminal which is not currently in usdhe master half of a pseudo-terminal is a single-open device; thus,
each master may be opened in turn until an open succ&bdsslave side of the pseudo-terminal is then
opened, and is set to the proper terminal modes if necesHagyprocess theforks; the child closes the
master side of the pseudo-terminal, &xes the appropriate prograniMeanwhile, the parent closes the
slave side of the pseudo-terminal and begins reading and writing from the mast8asigde code mak-
ing use of pseudo-terminals is given in Figure 8; this code assumes that a connection onsesgxtket
connected to a peer who wants a service of some kind, and that the process has disassociated itself from

PS1:8-28 Advanced.3BSD IPC Titorial

any previous controlling terminal.

gotpty = 0;
for (c =’p’; lgotpty && € <="'s’; c++) {
line = "/dev/ptyXX";
line[sizeof("/dev/pty")-1] = c;
line[sizeof("/dev/ptyp")-1] ='0";
if (stat(line, &statbuf) < 0)
break;
for (i=0;i< 16; i++) {
line[sizeof("/dev/ptyp™)-1] = "0123456789abcdef"[i];
master = open(line, O_RDWR);
if (master > 0) {

gotpty = 1;
break;
}
}
}
if (‘gotpty) {
syslog(LOG_ERR, "All network ports in use");
exit(1);
}

line[sizeof("/dev/")-1] =t;

slave = open(line, O_RDWRY}" slaveis now slave side */

if (slave < 0) {
syslog(LOG_ERR, "Cannot open slave pty %s", line);
exit(1);

}

ioctl(slave, TIOCGETR&b); /* Set slave tty modes */
b.sg_flags = CRMOD|XABS|ANYP;
ioctl(slave, TIOCSETRb);

i = fork();

if (i<0){
syslog(LOG_ERR, "fork: %m");
exit(1);

}else if (i) { [* Parent */

close(slave);

}else { * Child */
(void) close(s);
(void) close(master);
dup2(slave, 0);
dup2(slave, 1);
dup2(slave, 2);
if (slave > 2)

(void) close(slave);

Figure 8. Creation and use of a pseudo terminal

Advanced 4.3BSD IPCukorial PS1:8-29

5.6. Selectingspecific protocols

If the third agument to thesocketcall is 0, socketwill select a default protocol to use with the
returned socket of the type requestdthe default protocol is usually correct, and alternate choices are not
usually available However when using‘faw” sockets to communicate directly with lowewel protocols
or hardware interfaces, the protocajament may be important for setting up demultiplexifgr exam-
ple, raw sockets in the Internet family may be used to implement a new protocol ghandthe socket
will receive packets only for the protocol specifiéich dbtain a particular protocol one determines the pro-
tocol number as defined within the communication dom&ior. the Internet domain one may use one of
the library routines discussed in section 3, suaiegsotobyname

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

pp = getprotobyname("newtcp");
s = cket(AF_INET SOCK_STREAM, pp->p_proto);

This would result in a socket using a stream based connection, but with protocol typéeivicp’
instead of the defaultt¢p.”

In the NS domain, the available socket protocols are definedeims/ns.h. To create a raw socket
for Xerox Error Protocol messages, one might use:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>

s = ocket(AF_NS, SOCK_RW, NSPROTO_ERROR);

5.7. Address binding

As was mentioned in section 2, binding addresses to sockets in the Internet and NS domains can be
fairly complex. As a brief reminderthese associations are composed of local and foreign addresses, and
local and foreign portsPort numbers are allocated out of separate spaces, one for each system and one for
each domain on that systerfihrough thebind system call, a process may specify half of an association,
the <local address, local port> part, while teanectandacceptprimitives are used to complete a socket’
association by specifying the <foreign address, foreign port> gante the association is created in two
steps the association uniqueness requirement indicated previously could be violated unless care is taken.
Further it is unrealistic to expect user programs to always know proper values to use for the local address
and local port since a host may reside on multiple networks and the set of allocated port numbers is not
directly accessible to a user

To dmplify local address binding in the Internet domain the notion ofidtard” address has been
provided. Wheran address is specified as INADDR_ANY (a manifest constant defined in <netinet/in.h>),
the system interprets the addressasy' valid address’ For example, to bind a specific port number to a
socket, but leave the local address unspecified, the following code might be used:

PS1:8-30 Advanced.3BSD IPC Titorial

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = 9cket(AF_INET SOCK_STREAM, 0);
sin.sin_family = AF_INET
sin.sin_adds_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPOR;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified poramtimber

sent to any of the possible addresses assigned to aHwostxample, if a host has addresses 128.32.0.4 and
10.0.0.78, and a socket is bound as above, the process will be able to accept connection requests which are
addressed to 128.32.0.4 or 10.0.0.78a server process wished to only allow hosts on a given network
connect to it, it would bind the address of the host on the appropriate network.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the system
will select an appropriate port number for Tthis shortcut will work both in the Internet and NS domains.
For example, to bind a specific local address to a socket, but to leave the local port number unspecified:

hp = gethostbyname(hostname);
if (hp == NULL) {

}

bcopy(hp->h_addi(char *) sin.sin_addihp->h_length);
sin.sin_port = htons(0);

bind(s, (struct sockaddr *) &sin, sizeof (sin));

The system selects the local port number based on two criféréfirst is that on 4BSD systems, Internet
ports below IPPOR_RESER/ED (1024) (for the Xerox domain, O through 3000) are reserved for privi-
leged users (i.e., the super user); Internet ports above IPREIFERRESERED (50000) are reserved for
non-privileged serversThe second is that the port number is not currently bound to some other $ncket.
order to find a free Internet port number in the privileged range ¢segportlibrary routine may be used as
follows to return a stream socket in with a privileged port number:

int Iport = IPPOR_RESERED - 1;
ints;
s = resvport(&lport);
if (s<0){
if (errno == EAGAIN)
fprintf(stdert "socket: all ports in use\n");
else
perror(“rresvport: socket");

}

The restriction on allocating ports was done to allow processes executingeouae” environment to per

form authentication based on the originating address and port nufdreexample, thelogin(1) com-

mand allows users to log in across a network without being asked for a password, if two conditions hold:
First, the name of the system the user is logging in from is in theetiéosts.equieon the system he is
logging in to (or the system name and the user name are in tfe.dsestsfile in the uses home direc-

tory), and second, that the userlogin process is coming from a privileged port on the machine from
which he is logging.The port number and network address of the machine from which the user is logging
in can be determined either by themresult of theacceptcall, or from thegetpeernameall.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for an appli-
cation. Thisis because associations are created in a two step prdees®xample, the Internet file

Advanced 4.3BSD IPCukorial PS1:8-31

transfer protocol, FT,Pypecifies that data connections must always originate from the same local port.
However duplicate associations are avoided by connecting ferdiit foreign ports.In this situation the

system would disallow binding the same local address and port number to a socket if a previous data con-
nections cket still existed.To override the default port selection algorithm, an option call must be per
formed prior to address binding:

int on=1;

setsockopt(s, SOL_SOCKESO_REUSEADDR, &on, sizeof(on));
bind(s, (struct sockaddr *) &sin, sizeof (sin));

With the above call, local addresses may be bound which are already imhisaloes not violate the
unigueness requirement as the system still checks at connect time to be sure any other sockets with the
same local address and port do not have the same foreign address aritl theriassociation already

exists, the error EADDRINUSE is returned.

5.8. Broadcasting and determining network configuration

By using a datagram socket, it is possible to send broadcast packets on many networks supported by
the system.The network itself must support broadcast; the system provides no simulation of broadcast in
software. Broadcashessages can place a high load on a network since they force every host on the net-
work to service them.Consequentlythe ability to send broadcast packets has been limited to sockets
which are explicitly marked as allowing broadcastiBgoadcast is typically used for one of two reasons: it
is desired to find a resource on a local network without prior knowledge of its address, or important func-
tions such as routing require that information be sent to all accessible neighbors.

To nd a broadcast message, a datagram socket should be created:
s = ocket(AF_INET SOCK_DGRAM, 0);
or
s = ocket(AF_NS, SOCK_DGRAM, 0);
The socket is marked as allowing broadcasting,

int on=1;

setsockopt(s, SOL_SOCKESO_BROADCAST &on, sizeof (on));
and at least a port number should be bound to the socket:

sin.sin_family = AF_INET
sin.sin_adds_addr = htonl(INADDR_ANY);
sin.sin_port = htons(MYPOR;

bind(s, (struct sockaddr *) &sin, sizeof (sin));

or, for the NS domain,

sns.sns_family = AF_NS;

netnum = htonl(net);

sns.sns_adde_net = *(union ns_net *) &netnum; /* insert net number */
sns.sns_adde_port = htons(MYPOR);

bind(s, (struct sockaddr *) &sns, sizeof (sns));

The destination address of the message to be broadcast depends on the network(s) on which the message is
to be broadcastThe Internet domain supports a shorthand notation for broadcast on the local network, the
address INADDR_BROADCAST (defined imetinet/in.l>. To determine the list of addresses for all
reachable neighbors requires knowledge of the networks to which the host is conBautedthis infor

mation should be obtained in a host-independent fashion and may be impossible to derive, 4.3BSD pro-
vides a method of retrieving this information from the system data structlihesSIOCGIFCONFRoctl

PS1:8-32 Advanced.3BSD IPC Titorial

call returns the interface configuration of a host in the form of a siieglef structure; this structure con-
tains a ‘data ared'which is made up of an array of ifeq structures, one for each network interface to
which the host is connectedhese structures are definedimet/if.h> as follows:

struct ifconf {
int ifc_len; /* size of associated biefr */
union {
caddr_t ifcu_buf;
struct ifreg*ifcu_req;

}ifc_ifcu;
¥
#define ifc_buf ifc_ifcu.ifcu_buf /* buffer address */
#define ifc_req ifc_ifcu.ifcu_req [*array of structures returned */

#define IFNAMSIZ 16

struct ifreq {
char ifr_name[IFNAMSIZ]; /* if name, e.g. "en0" */
union {
struct sockaddifru_addr;
struct sockaddifru_dstaddr;
struct sockaddifru_broadaddr;
short ifru_flags;
caddr_t ifru_data;
}ifr_ifru;

h

#define ifr_addr ifr_ifru.ifru_addr /* address */

#define ifr_dstaddr ifr_ifru.ifru_dstaddr /*other end of p-to-p link */
#define ifr_broadaddr ifr_ifru.ifru_broadaddr btoadcast address */
#define ifr_flags ifr_ifru.ifru_flags [*flags */

#define ifr_data ifr_ifru.ifru_data [*for use by interface */

The actual call which obtains the interface configuration is

struct ifconf ifc;
char buf[BUFSIZ];

ifc.ifc_len = sizeof (buf);
ifc.ifc_buf = buf;
if (ioctl(s, SIOCGIFCONF(char *) &ifc) < 0) {

}

After this call buf will contain oneifreq structure for each network to which the host is connected, and
ifc.ifc_lenwill have been modified to reflect the number of bytes used Lifr #ustructures.

For each structure there exists a setioferface flags'which tell whether the network correspond-
ing to that interface is up or down, point to point or broadcast, ®te. SIOCGIFFLAGSoctl retrieves
these flags for an interface specified byfesr structure as follows:

Advanced 4.3BSD IPCukorial PS1:8-33

struct ifreq *ifr;
ifr = ifc.ifc_req;

for (n = ifc.ifc_len / sizeof (struct ifreq); --n >= 0; ifr++) {
/*
* We rnrust be careful that we ddnise an interface
* devoted to an address family other than those intended;
*if we were interested in NS interfaces, the
* AF_INET would be AF_NS.
*
if (ifr ->ifr_addrsa_family = AF_INET)
continue;
if (ioctl(s, SIOCGIFFLAGS, (char *) ifr) < 0) {

}
/*
* Skip boring cases.
*
if ((ifr ->ifr_flags & IFF_UP) == 0 ||
(ifr->ifr_flags & IFF_LOOPBACK) ||
(ifr->ifr_flags & (IFF_BROADCAST | IFF_POINTOPOINT)) == 0)

continue;

Once the flags have been obtained, the broadcast address must be obtalmedase of broadcast
networks this is done via the SIOCGIFBRDADD®#tt!, while for point-to-point networks the address of
the destination host is obtained with SIOCGIFBSDR.

struct sockaddr dst;

if (ifr ->ifr_flags & IFF_POINTOPOINT) {
if (ioctl(s, SIOCGIFDSRADDR, (char *) ifr) < 0) {

}

bcopy((char *) ife>ifr_dstaddry (char *) &dst, sizeof (ifr>ifr_dstaddr));
} else if (ifr->ifr_flags & IFF_BROADCAST) {

if (ioctl(s, SIOCGIFBRDADDR, (char *) ifr) < 0) {

}
bcopy((char *) ife>ifr_broadaddr(char *) &dst, sizeof (ifr>ifr_broadaddr));

After the appropriatéoctl's have obtained the broadcast or destination address (nalsfjnthe
sendtocall may be used:
sendto(s, buf, buflen, 0, (struct sockaddr *)&dst, sizeof (dst));

}

In the above loop onsendtooccurs for every interface to which the host is connected that supports the

notion of broadcast or point-to-point addressitfga process only wished to send broadcast messages on a
given network, code similar to that outlined above would be used, but the loop would need to find the cor

rect destination address.
Received broadcast messages contain the senders address and port, as datagram sockets are bound

before a message is allowed to go out.

PS1:8-34 Advanced.3BSD IPC Titorial

5.9. SockeOptions

It is possible to set and get a number of options on sockets datduwckopandgetsockopsystem
calls. Thesepptions include such things as marking a socket for broadcasting, not to route, to linger on
close, etc.The general forms of the calls are:

setsockopt(s, level, optname, optval, optlen);
and

getsockopt(s, level, optname, optval, optlen);

The parameters to the calls are as follosus:the socket on which the option is to be applieevel
specifies the protocol layer on which the option is to be applied; in most cases thissechet level’,
indicated by the symbolic constant SOL_SOCKH§fined in<sys/socket.h>.The actual option is speci-
fied inoptnameand is a symbolic constant also definedsys/socket.h> OptvalandOptlenpoint to the
value of the option (in most cases, whether the option is to be turned dj andfthe length of the value
of the option, respectivelyFor getsockoptoptlenis a value-result parameténitially set to the size of the
storage area pointed to bptval and modified upon return to indicate the actual amount of storage used.

An example should help clarify thingdt is sometimes useful to determine the type (e.g., stream,
datagram, etc.)of an existing socket; programs undieetd (described below) may need to perform this
task. Thiscan be accomplished as follows via the SO_TYPE socket option agdttoekoptall:

#include <sys/types.h>
#include <sys/socket.h>

int type, size;
size = sizeof (int);
if (getsockopt(s, SOL_SOCKETO_TYPE, (char *) &type, &size) < 0) {

}

After the getsockoptall, typewill be set to the value of the socket type, as definedsyis/socket.h> If,
for example, the socket were a datagram sockgie would have the value corresponding to
SOCK_DGRAM.

5.10. NSPacket Sequences

The semantics of NS connections demand that the user both be able to look inside the network header
associated with any incoming packet and be able to specify what should go in certain fields of an outgoing
packet. Usinglifferent calls tesetsockoptit is possible to indicate whether prototype headers will be asso-
ciated by the user with each outgoing packet (SO_HEADERS_ON_OUTPUT), to indicate whether the
headers received by the system should be delivered to the user (SO_HEADERS_ON_INPUT), or to indi-
cate default information that should be associated with all outgoing packets on a given socket
(SO_DERULT_HEADERS).

The contents of a SPP header (minus the IDP header) are:

Advanced 4.3BSD IPCukorial PS1:8-35

struct sphdr {
u_char sp_cc; [* connection control */
#define SP_SP0x80 [* system packet */
#define SP_SA0x40 /* send acknowledgement */
#define SP_OBIx20 [* attention (out of band data) */
#define SP_EMX10 /*end of message */
u_char sp_dt; [* datastream type */
u_short sp_sid; [* source connection identifier */
u_short sp_did; [* destination connection identifier */
u_short sp_seq; [* sequence number */
u_short sp_ack; /* acknowledge number */
u_short sp_alo; /* allocation number */
¥

Here, the items of interest are tti@asteam typeand theconnection contl fields. Thesemantics of the
datastream type are defined by the application(s) in question; the value of this field is, by default, zero, but
it can be used to indicate things such as XerBulk Data Tansfer Protocol (in which case it is set to one).

The connection control field is a mask of the flags defined just belovné.user may set or clear the end-
of-message bit to indicate that a given message is the last of a given substream type, or may set/clear the
attention bit as an alternate way to indicate that a packet should be sent out-oAbaard.example, to
associate prototype headers with outgoing SPP packets, consider:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

struct sockaddr_ns sns, to;

ints, on=1,
struct databuf {

struct sphdr proto_sppi* prototype header */

char buf[534]; /* max. possible data by Xerox std. */
} buf;

s = 9cket(AF_NS, SOCK_SEQKET, 0);

bind(s, (struct sockaddr *) &sns, sizeof (sns));
setsockopt(s, NSPR@I SPPSO_HEADERS_ON_OUTPUI&on, sizeof(on));

buf.proto_spp.sp_dt = #; bulk data */

buf.proto_spp.sp_cc = SP_EM; /* end-of-message */

strepy(buf.buf, "hello world\n");

sendto(s, (char *) &buf, sizeof(struct sphdr) + strlen("hello world\n"),
(struct sockaddr *) &to, sizeof(to));

Note that one must be careful when writing headers; if the prototype header is not written with the data
with which it is to be associated, the kernel will treat the first few bytes of the data as the \uitader
unpredictable resultsTo turn of the above association, and to indicate that packet headers received by the
system should be passed up to the,user might use:

PS1:8-36 Advanced.3BSD IPC Titorial

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

struct sockaddr sns;
ints,on=1, df=0;

s = 9cket(AF_NS, SOCK_SEQ®KET, 0);
bind(s, (struct sockaddr *) &sns, sizeof (sns));

setsockopt(s, NSPR@I SPPSO_HEADERS_ON_OUTPU & off, sizeof(of));
setsockopt(s, NSPR@I SPPSO_HEADERS_ON_INPUT&on, sizeof(on));

Output is handled somewhat fdifently in the IDP world.The header of an IDP-level packet looks

like:

struct idp {
u_short idp_sum; /* Checksum */
u_short idp_len; /* Length, in bytes, including header */
u_char idp_tc; /* Transport Control (i.e., hop count) */
u_char idp_pt; /* Packet Ype (i.e., level 2 protocol) */
struct ns_addidp_dna; [*Destination Network Address */
struct ns_addidp_sna; /*Source Network Address */

¥

The primary field of interest in an IDP header isgheket typdield. Thestandard values for this field are
(as defined in retns/ns.h):

#define NSPROO_RI 1 /* Routing Information */
#define NSPROO_ECHO 2 /* Echo Protocol */
#define NSPROO_ERROR 3 /* Error Protocol */
#define NSPROD_PE 4 /* Packet Exchange */
#define NSPROO_SPP 5 /* Sequenced Packet */

For SPP connections, the contents of this field are automatically set to NOPRPR; for IDP packets,
this value defaults to zero, which meansknown”.

Setting the value of that field with SO_D&EBLT_HEADERS is easy:

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/idp.h>

struct sockaddr sns;
struct idp proto_idp; [* prototype header */
ints,on=1,

s = ocket(AF_NS, SOCK_DGRAM, 0);

bind(s, (struct sockaddr *) &sns, sizeof (sns));

proto_idp.idp_pt = NSPRQO _PE; /*packet exchange */

setsockopt(s, NSPR@Y IDP, SO DEFAULT_HEADERS, (char *) &proto_idp,
sizeof(proto_idp));

Advanced 4.3BSD IPCukorial PS1:8-37

Using SO _HEADERS _ON_OUTPUT is somewhat more fialift. When
SO_HEADERS_ON_OUTPUT is turned on for an IDP socket, the socket becomes (for all intents and pur
poses) a raw socketn this case, all the fields of the prototype header (except the length and checksum
fields, which are computed by the kernel) must be filled in correctly in order for the socket to send and
receive data in a sensible mann&o be nore specific, the source address must be set to that of the host
sending the data; the destination address must be set to that of the host for whom the data is intended; the
packet type must be set to whatever value is desired; and the hopcount must be set to some reasonable
value (almost always zero)t should also be noted that simply sending data usirige will not work
unless aonnector sendtocall is used, in spite of the fact that it is the destination address in the prototype
header that is used, not the one given in either of those ¢allsalmost all IDP applications , using
SO_DERULT_HEADERS is easier and more desirable than writing headers.

5.11. Three-way Handshake

The semantics of SPP connections indicates that a three-way handshake, involving changes in the
datastream type, should — but is not absolutely required to — take place before a SPP connection is
closed. Almostall SPP connections ar&vell-behaved' in this manner; when communicating with any
process, it is best to assume that the three-way handshake is required unless it is known for certain that it is
not required.In a three-way close, the closing process indicates that it wishes to close the connection by
sending a zero-length packet with end-of-message set and with datastream typae2bther side of the
connection indicates that it is OK to close by sending a zero-length packet with end-of-message set and
datastream type 255cinally, the closing process replies with a zero-length packet with substream type
255; at this point, the connection is considered clo3ée following code fragments are simplified exam-
ples of how one might handle this three-way handshake at the user level; in the future, support for this type
of close will probably be provided as part of the C library or as part of the kdrnelfirst code fragment
below illustrates how a process might handle three-way handshake if it sees that the process it is communi-
cating with wants to close the connection:

PS1:8-38 Advanced.3BSD IPC Titorial

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

#ifndef SPPSST_END

#define SPPSST_END 254
#define SPPSST_ENDREPI255
#endif

struct sphdr proto_sp;

ints;

read(s, buf, BUFSIZE);
if (((struct sphdr *)buf)->sp_dt == SPPSST_END) {

/*

* SPPSST_END indicates that the other side wants to

* close.

*

proto_sp.sp_dt = SPPSST_ENDREPL

proto_sp.sp_cc = SP_EM,;

setsockopt(s, NSPR@I SPPSO_DEFAULT_HEADERS, (char *)&proto_sp,

sizeof(proto_sp));

write(s, buf, 0);

/*

* Write a zero-length packet with datastream type = SPPSST_ENDREPL
* to indicate that the close is OK with uShe packet that we

* don't see (because we damook for it) is another packet

* from the other side of the connection, with SPPSST_ENDREPL
*on it it, too. Once that packet is sent, the connection is

* considered closed; note that we really ought to retransmit

* the close for some time if we do not get a reply

*

close(s);

To indicate to another process that we would like to close the connection, the following code wimald suf

Advanced 4.3BSD IPCukorial PS1:8-39

#include <sys/types.h>
#include <sys/socket.h>
#include <netns/ns.h>
#include <netns/sp.h>

#ifndef SPPSST_END

#define SPPSST_END 254
#define SPPSST_ENDREPI255
#endif

struct sphdr proto_sp;

ints;

proto_sp.sp_dt = SPPSST_END;

proto_sp.sp_cc = SP_EM,;

setsockopt(s, NSPR@I SPPSO_DEFAULT_HEADERS, (char *)&proto_sp,
sizeof(proto_sp));

write(s, buf, 0); /* send the end request */

proto_sp.sp_dt = SPPSST_ENDREPL

setsockopt(s, NSPR@I SPPSO_DEFAULT_HEADERS, (char *)&proto_sp,
sizeof(proto_sp));

/*

*We assume (perhaps unwisely)

* that the other side will send the

* ENDREPLY, so we'll just send our final ENDREPL

* as if we'd seen theirs already

*/

write(s, buf, 0);

close(s);

5.12. PacketExchange

The Xerox standard protocols include a protocol that is both reliable and datagram-orignged.
protocol is known as Packet Exchange (PEX or PE) and, likeiSRered on top of IDPPEX is impor
tant for a number of things: Courier remote procedure calls may be expedited through the use of PEX, and
many Xerox servers are located by doing a PBXoadcastForServersoperation. Althoughthere is no
implementation of PEX in the kernel, it may be simulated at the user level with some clever coding and the
use of one peculiagetsockopt A PEX packet looks like:

/*
* The packet-exchange header shown here is not defined
* as part of any of the system include files.

*/

struct pex {
struct idp p_idp; /*idp header */
u_short ph_id[2]; /* unique transaction ID for pex */
u_short ph_client; [* client type field for pex */

h

Theph_idfield is used to hold aunique id’ that is used in duplicate suppression;gheclientfield indi-

cates the PEX client type (similar to the packet type field in the IDP hed®eR).reliability stems from

the fact that it is an idempotent €end a packet to you, you send a packet td)msitocol. Processes on

each side of the connection may use the unique id to determine if they have seen a given packet before (the
unique id field difers on each packet sent) so that duplicates may be detected, and to indicate which mes-
sage a given packet is in responselt@ packet with a given unique id is sent and no response is received

in a given amount of time, the packet is retransmitted until it is decided that no response will ever be

PS1:8-40 Advanced.3BSD IPC Titorial

received. © dmulate PEX, one must be able to generate unique ids -- something that is hard to do at the
user level with any real guarantee that the id is really unigjherefore, a means (vggetsockopthas been
provided for getting unigue ids from the kern&he following code fragment indicates how to get a unique
id:

long uniqueid,;

int s, idsize = sizeof(uniqueid);

s = ocket(AF_NS, SOCK_DGRAM, 0);

/* get id from the kernel -- only on IDP sockets */
getsockopt(s, NSPRAX PE, SO_SEQNO, (char *)&uniqueid, &idsize);

The retransmission and duplicate suppression code required to simulate PEX fully is left as an exercise for
the reader

5.13. Inetd

One of the daemons provided with 4.3BSDnistd, the so called‘internet supesserver’ Inetdis
invoked at boot time, and determines from the/éte/inetd.conthe servers for which it is to listef©Once
this information has been read and a pristine environment créagdiproceeds to create one socket for
each service it is to listen fdiinding the appropriate port number to each socket.

Inetdthen performs aelecton all these sockets for read availabjlitraiting for somebody wishing a
connection to the service corresponding to that sodketdthen performs aaccepton the socket in ques-
tion, forks, dups the new socket to file descriptors 0 and 1 (stdin and stdout), closes other open file descrip-
tors, andexec the appropriate server

Servers making use ofetdare considerably simplified, asetdtakes care of the majority of the IPC
work required in establishing a connectidrhe server invoked biyetd expects the socket connected to its
client on file descriptors 0 and 1, and may immediately perform any operations seati asite, send or
recv. Indeed, servers may use tewéd I/O as provided by théstdio” conventions, as long as as they
remember to usélushwhen appropriate.

One call which may be of interest to individuals writing servers uimégd is thegetpeernameall,
which returns the address of the peer (process) connected on the other end of thd~spaketmple, to
log the Internet address iidot notation’ (e.g., ‘128.32.0.4") of a client connected to a server unaestd
the following code might be used:

struct sockaddr_in name;
int namelen = sizeof (name);

if (getpeername(0, (struct sockaddr *)&name, &namelen) < 0) {
syslog(LOG_ERR, "getpeername: %m");
exit(1);

} else
syslog(LOG_INFO, "Connection from %s", inet_ntoa(name.sin_addr));

While the getpeernameall is especially useful when writing programs to run viitktd, it can be used
under other circumstanceBe warned, howevethatgetpeernamavill fail on UNIX domain sockets.

