Bits and Bytes
CS 213
Aug. 27, 1998

Topics

• Why bits?

• Representing information as bits
 – Binary/Hexadecimal
 – Byte representations
 » numbers
 » characters and strings
 » Instructions

• Bit-level manipulations
 – Boolean algebra
 – Expressing in C
Why Don’t Computers Use Base 10?

Base 10 Number Representation
- That’s why fingers are known as “digits”
- Natural representation for financial transactions
 - Floating point number cannot exactly represent $1.20
- Even carries through in scientific notation
 - 1.5213×10^4

Implementing Electronically
- Hard to store
 - ENIAC (First electronic computer) used 10 vacuum tubes / digit
- Hard to transmit
 - Need high precision to encode 10 signal levels on single wire
- Messy to implement digital logic functions
 - Addition, multiplication, etc.
Binary Representations

Base 2 Number Representation

- Represent 15213_{10} as 11101101101101_2
- Represent 1.20_{10} as $1.0011001100110011[0011]..._2$
- Represent 1.5213×10^4 as $1.1101101101101_2 \times 2^{13}$

Electronic Implementation

- Easy to store with bistable elements
- Reliably transmitted on noisy and inaccurate wires
- Straightforward implementation of arithmetic functions
Anatomy of an SRAM Cell

Inverter:
- High input --> Low Output
- Low input --> High Output

(bit line b)

(bit line b')

(word line)
SRAM Cell Principle

Inverter Amplifies
- Negative gain
- Slope < –1 in middle
- Saturates at ends

Inverter Pair Amplifies
- Positive gain
- Slope > 1 in middle
- Saturates at ends

Vin \[\rightarrow\] V1 \[\rightarrow\] Vin

V2 \[\rightarrow\] V1 \[\rightarrow\] V2
Bistable Element

Stability

• Require $V_{in} = V_2$
• Stable at endpoints
 – recover from perturbation
• Metastable in middle
 – Fall out when perturbed

Ball on Ramp Analogy
Byte-Oriented Memory Organization

Programs Refer to Virtual Addresses

- Conceptually very large array of bytes
- Actually implemented with hierarchy of different memory types
 - SRAM, DRAM, disk
 - Only allocate for regions actually used by program
- In Unix and Windows NT, address space private to particular “process”
 - Program being executed
 - Program can clobber its own data, but not that of others

Compiler + Run-Time System Control Allocation

- Where different program objects should be stored
- Multiple mechanisms: static, stack, and heap
- In any case, all allocation within single virtual address space
Encoding Byte Values

Byte = 8 bits

• Binary 00000000_2 to 11111111_2
• Decimal: 0_{10} to 255_{10}
• Hexadecimal 00_{16} to FF_{16}
 – Base 16 number representation
 – Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’
 – Write FA1D37B$_{16}$ in C as \texttt{0xFA1D37B}
 » Or \texttt{0xFA1D37B}

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>
Machine Words

Machine Has “Word Size”

• Nominal size of integer-valued data
 – Including addresses

• Most current machines are 32 bits (4 bytes)
 – Limits addresses to 4GB
 – Becoming too small for memory-intensive applications

• Our Alphas are 64 bits (8 bytes)
 – Potentially address 1.8×10^{19} bytes
 – Although current machines cannot do this
 » Limit is 4Terabytes

• Machines support multiple data formats
 – Fractions or multiples of word size
 – Always integral number of bytes
Word-Oriented Memory Organization

Addresses Specify Byte Locations

- Address of first byte in word
- Addresses of successive words differ by 4 (Sun) or 8 (Alpha)
Data Representations

Sizes of C Objects (in Bytes)

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Alpha</th>
<th>Sun, PC, Mac, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long int</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>char *</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

» Or any other pointer

Byte Ordering

- Alphas, PC’s are “Little Endian” machines
 - Least significant byte has lowest address
- Sun’s, Mac’s are “Big Endian” machines
 - Least significant byte has highest address
Examining Data Representations

Code to Print Byte Representation of Data

- Cast pointer to unsigned char * creates byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, int len) {
    int i;
    for (i = 0; i < len; i++)
        printf("0x%p\t0x%x\n", start+i, start[i]);
    printf("\n");
}
```

Printf directives:

- `%p`: Print pointer
- `%x`: Print Hexadecimal
show_bytes Execution Example

```
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result:

```
int a = 15213;
0x11fffffb8  0x6d
0x11fffffc9  0x3b
0x11fffffcba  0x0
0x11ffffffcbb  0x0
```
Representing Integers

```c
int A = 15213;
int B = -15213;
long int C = 15213;
```

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Binary</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>15213</td>
<td>0011 1011 0110 1101</td>
<td>3 B 6 D</td>
</tr>
</tbody>
</table>

Two’s complement representation (Covered next lecture)
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

Alpha Address

<table>
<thead>
<tr>
<th>Hex</th>
<th>1</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>C</th>
<th>A</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>0001 1111 1111 1111 1111 1111 1100 1010 0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sun Address

<table>
<thead>
<tr>
<th>Hex</th>
<th>E</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>B</th>
<th>2</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary</td>
<td>1110 1111 1111 1111 1111 1111 1011 0010 1100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects
Representing Floats

Float $F = 15213.0$;

IEEE Single Precision Floating Point Representation

Hex: 4 6 6 D B 4 0 0 0
Binary: 0100 0110 0110 1101 1011 0100 0000 0000
15213: 1110 1101 1011 01

Not same as integer representation, but consistent across machines
Representing Strings

Strings in C

• Represented by array of characters
• Each character encoded in ASCII format
 – Standard 7-bit encoding of character set
 – Other encodings exist, but uncommon
 – Character “0” has code 0x30
 » Digit i has code 0x30+i
• String should be null-terminated
 – Final character = 0

Compatibility

• Byte ordering not an issue
 – Data are single byte quantities
• Text files generally platform independent
 – Except for different conventions of line termination character!

```
char S[6] = "15213";
```

```
Alpha S          Sun S
  31               31
  35               35
  32               32
  31               31
  33               33
  00               00
```
Machine-Level Code Representation

Encode Program as Sequence of Instructions

- Each simple operation
 - Arithmetic operation
 - Read or write memory
 - Conditional branch

- Instructions encoded as bytes
 - Alpha’s, Sun’s, Mac’s use 4 byte instructions
 » Reduced Instruction Set Computer (RISC)
 - PC’s use variable length instructions
 » Complex Instruction Set Computer (CISC)

- Different instruction types and encodings for different machines
 - Most code not binary compatible

Programs are Byte Sequences Too!
Representing Instructions

```
int sum(int x, int y)
{
    return x+y;
}
```

<table>
<thead>
<tr>
<th>Alpha sum</th>
<th>Sun sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>81</td>
</tr>
<tr>
<td>00</td>
<td>C3</td>
</tr>
<tr>
<td>30</td>
<td>E0</td>
</tr>
<tr>
<td>42</td>
<td>08</td>
</tr>
<tr>
<td>01</td>
<td>90</td>
</tr>
<tr>
<td>80</td>
<td>02</td>
</tr>
<tr>
<td>FA</td>
<td>00</td>
</tr>
<tr>
<td>6B</td>
<td>09</td>
</tr>
</tbody>
</table>

- For this example, both use two 4-byte instructions
 - Use differing numbers of instructions in other cases

Different machines use totally different instructions and encodings
Boolean Algebra

Developed by George Boole in 19th Century

- Algebraic representation of logic
 - Encode “True” as 1 and “False” as 0

And

<table>
<thead>
<tr>
<th>&</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Or

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Not

<table>
<thead>
<tr>
<th>~</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Exclusive-Or (Xor)

- $A\oplus B = 1$ when either $A=1$ or $B=1$, but not both
Application of Boolean Algebra

Applied to Digital Systems by Claude Shannon

- 1937 MIT Master’s Thesis
- Reason about networks of relay switches
 - Encode closed switch as 1, open switch as 0

Connection when
\[A \& \sim B \mid \sim A \& B \]
\[= A^{\sim}B \]

Diagram:
```
A

\sim A

\sim B

B

```

Connection when
\[A \& \sim B \mid \sim A \& B \]
\[= A^{\sim}B \]
Properties of & and | Operations

Integer Arithmetic
• \(\langle \mathbb{Z}, +, *, -, 0, 1 \rangle \) forms a “ring”
• Addition is “sum” operation
• Multiplication is “product” operation
• \(-\) is additive inverse
• 0 is identity for sum
• 1 is identity for product

Boolean Algebra
• \(\langle \{0,1\}, |, \&, \sim, 0, 1 \rangle \) forms a “Boolean algebra”
• Or is “sum” operation
• And is “product” operation
• \sim is “complement” operation (not additive inverse)
• 0 is identity for sum
• 1 is identity for product
Properties of Rings & Boolean Algebras

<table>
<thead>
<tr>
<th>Boolean Algebra</th>
<th>Integer Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commutativity</td>
<td></td>
</tr>
<tr>
<td>$A</td>
<td>B \quad = \quad B</td>
</tr>
<tr>
<td>$A & B \quad = \quad B & A$</td>
<td>$A * B \quad = \quad B * A$</td>
</tr>
<tr>
<td>Associativity</td>
<td></td>
</tr>
<tr>
<td>$(A</td>
<td>B)</td>
</tr>
<tr>
<td>$(A & B) & C \quad = \quad A & (B & C)$</td>
<td>$(A * B) * C \quad = \quad A * (B * C)$</td>
</tr>
<tr>
<td>Product distributes over sum</td>
<td></td>
</tr>
<tr>
<td>$A & (B</td>
<td>C) \quad = \quad (A & B)</td>
</tr>
<tr>
<td>Sum and product identities</td>
<td></td>
</tr>
<tr>
<td>$A</td>
<td>0 \quad = \quad A$</td>
</tr>
<tr>
<td>$A & 1 \quad = \quad A$</td>
<td>$A * 1 \quad = \quad A$</td>
</tr>
<tr>
<td>Zero is product annihilator</td>
<td></td>
</tr>
<tr>
<td>$A & 0 \quad = \quad 0$</td>
<td>$A * 0 \quad = \quad 0$</td>
</tr>
<tr>
<td>Cancellation of negation</td>
<td></td>
</tr>
<tr>
<td>$\sim (\sim A) \quad = \quad A$</td>
<td>$\sim (\sim A) \quad = \quad A$</td>
</tr>
</tbody>
</table>
Ring \neq Boolean Algebra

<table>
<thead>
<tr>
<th>Boolean Algebra</th>
<th>Integer Ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boolean: Sum distributes over product</td>
<td></td>
</tr>
<tr>
<td>$A \mid (B & C) = (A \mid B) & (A \mid C)$</td>
<td>$A + (B \times C) \neq (A + B) \times (B + C)$</td>
</tr>
<tr>
<td>Boolean: Idempotency</td>
<td></td>
</tr>
<tr>
<td>$A \mid A = A$</td>
<td>$A + A \neq A$</td>
</tr>
<tr>
<td>“A is true” or “A is true” = “A is true”</td>
<td></td>
</tr>
<tr>
<td>$A & A = A$</td>
<td>$A \times A \neq A$</td>
</tr>
<tr>
<td>Boolean: Absorption</td>
<td></td>
</tr>
<tr>
<td>$A \mid (A & B) = A$</td>
<td>$A + (A \times B) \neq A$</td>
</tr>
<tr>
<td>“A is true” or “A is true and B is true” = “A is true”</td>
<td></td>
</tr>
<tr>
<td>$A & (A \mid B) = A$</td>
<td>$A \times (A + B) \neq A$</td>
</tr>
<tr>
<td>Boolean: Laws of Complements</td>
<td></td>
</tr>
<tr>
<td>$A \mid \sim A = 1$</td>
<td>$A + \sim A \neq 1$</td>
</tr>
<tr>
<td>“A is true” or “A is false”</td>
<td></td>
</tr>
<tr>
<td>Ring: Every element has additive inverse</td>
<td></td>
</tr>
<tr>
<td>$A \mid \sim A \neq 0$</td>
<td>$A + \sim A = 0$</td>
</tr>
</tbody>
</table>
Properties of & and ^

Boolean Ring
- $\langle\{0,1\}, ^, &, I, 0, 1\rangle$
- Identical to integers mod 2
- I is identity operation: $I(A) = A$
 \[-A \land A = 0\]

Property
- Commutative sum $A \land B = B \land A$
- Commutative product $A \lor B = B \lor A$
- Associative sum $(A \land B) \land C = A \land (B \land C)$
- Associative product $(A \lor B) \lor C = A \lor (B \lor C)$
- Prod. over sum $A \land (B \lor C) = (A \land B) \lor (B \land C)$
- 0 is sum identity $A \land 0 = A$
- 1 is prod. identity $A \lor 1 = A$
- 0 is product annihilator $A \land 0 = 0$
- Additive inverse $A \land A = 0$
Relations Between Operations

DeMorgan’s Laws

• Express & in terms of |, and vice-versa

\[A \& B = \sim(\sim A \mid \sim B) \]

» A and B are true if and only if neither A nor B is false

\[A \mid B = \sim(\sim A \& \sim B) \]

» A or B are true if and only if neither A is false nor B is false

Exclusive-Or using Inclusive Or

\[A \wedge B = (\sim A \& B) \mid (A \& \sim B) \]

» Exactly one of A and B is true

\[A \wedge B = (A \mid B) \& \sim(A \& B) \]

» Either A is true, or B is true, but not both
General Boolean Algebras

Operate on Bit Vectors

- Operations applied bitwise

\[
\begin{align*}
01101001 & \quad 01101001 & \quad 01101001 \\
\& 01010101 & \mid 01010101 & \oplus 01010101 & \sim 01010101 \\
01000001 & \quad 01111101 & \quad 00111100 & \quad 10101010
\end{align*}
\]

Representation of Sets

- Width \(w \) bit vector represents subsets of \(\{0, \ldots, w-1\} \)

- \(a_j = 1 \) if \(j \in A \)

- \(\& \) Intersection

\[
\begin{align*}
-01101001 & \quad \{0, 3, 5, 6\} \\
-01010101 & \quad \{0, 2, 4, 6\}
\end{align*}
\]

- \(\mid \) Union

\[
\begin{align*}
01000001 & \quad \{0, 6\} \\
01111101 & \quad \{0, 2, 3, 4, 5, 6\}
\end{align*}
\]

- \(^\oplus \) Symmetric difference

\[
\begin{align*}
00111100 & \quad \{2, 3, 4, 5\}
\end{align*}
\]

- \(^\sim \) Complement

\[
\begin{align*}
10101010 & \quad \{1, 3, 5, 7\}
\end{align*}
\]
Bit-Level Operations in C

Operations &, |, ~, ^ Available in C

- Apply to any “integer” data type
 - long int, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- \(~0x41 \rightarrow 0xBE\)
 \(~01000001_2 \rightarrow 10111110_2\)

- \(~0x00 \rightarrow 0xFF\)
 \(~00000000_2 \rightarrow 11111111_2\)

- \(0x69 \& 0x55 \rightarrow 0x41\)
 \(01101001_2 \& 01010101_2 \rightarrow 01000001_2\)

- \(0x69 | 0x55 \rightarrow 0x7D\)
 \(01101001_2 | 01010101_2 \rightarrow 01111101_2\)
Contrast: Logic Operations in C

Contrast to Logical Operators

• &&, ||, !
 – View 0 as “False”
 – Anything nonzero as “True”
 – Always return 0 or 1

Examples (char data type)

• !0x41 --> 0x00
• !0x00 --> 0x01
• !!0x41 --> 0x01

• 0x69 && 0x55 --> 0x01
• 0x69 || 0x55 --> 0x01
Shift Operations

Left Shift: \(x << y \)
- Shift bit-vector \(x \) left \(y \) positions
 - Throw away extra bits on left
 - Fill with 0’s on right

Right Shift: \(x >> y \)
- Shift bit-vector \(x \) right \(y \) positions
 - Throw away extra bits on right
- Logical shift
 - Fill with 0’s on left
- Arithmetic shift
 - Replicate most significant bit on right
 - Useful with two’s complement integer representation

<table>
<thead>
<tr>
<th>Argument x</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01100010</td>
<td></td>
</tr>
<tr>
<td><< 3</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00011000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>00011000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Argument x</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10100010</td>
<td></td>
</tr>
<tr>
<td><< 3</td>
<td>00010000</td>
</tr>
<tr>
<td>Log. >> 2</td>
<td>00101000</td>
</tr>
<tr>
<td>Arith. >> 2</td>
<td>11101000</td>
</tr>
</tbody>
</table>
Cool Stuff with Xor

- Bitwise Xor is form of addition
- With extra property that every value is its own additive inverse
 - \(A \oplus A = 0 \)

```c
void funny(int *x, int *y)
{
    *x = *x ^ *y;    /* #1 */
    *y = *x ^ *y;    /* #2 */
    *x = *x ^ *y;    /* #3 */
}
```

<table>
<thead>
<tr>
<th>Step</th>
<th>*x</th>
<th>*y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Begin</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>A(\oplus)B</td>
<td>B</td>
</tr>
<tr>
<td>2</td>
<td>A(\oplus)B</td>
<td>(A(\oplus)B)(\oplus)B = A(\oplus)(B(\oplus)B) = A(\oplus)0 = A</td>
</tr>
<tr>
<td>3</td>
<td>(A(\oplus)B)(\oplus)A = (B(\oplus)A)(\oplus)A = B(\oplus)(A(\oplus)A) = B(\oplus)0 = B</td>
<td>A</td>
</tr>
<tr>
<td>End</td>
<td>B</td>
<td>A</td>
</tr>
</tbody>
</table>