Accelerating Deep Learning with the Biggest Losers

Angela H. Jiang, Daniel L.-K. Wong, Giulio Zhou, David G. Andersen, Jeffrey Dean, Gregory R. Ganger, Gauri Joshi, Michael Kaminsky, Michael A. Kozuch, Zachary C. Lipton, Padmanabhan Pillai
Deep learning enables emerging applications
DNN training analyzes many examples
Selective-Backprop prioritizes informative examples
DNN basics

How to use and train a DNN
Example task: Image classification

DNN

Dog
Lizard
Goat
Bird
DNN inference: From image to “Dog”
Training DNNs relies on a labeled dataset

Class: Dog
Class: Bird
Class: Lizard
Class: Dog
DNN training: Determining the weights

Class 1
DNN training: Determining the weights via backpropagation
DNN training: Determining the weights via backpropagation
DNN training analyzes an example many times
DNN training analyzes an example many times
SelectiveBackprop targets slowest part of training
Not all examples are equally useful
Prioritize examples with high loss

Examples with low loss

Examples with high loss
Selective Backprop algorithm
DNN training analyzes an example many times
Bad idea #1:
Deciding with a hard threshold

if loss > threshold: backprop()
Bad idea #2:
Deciding probabilistically with absolute loss

\[P(\text{backprop}) = \text{normalize}(\text{loss}, 0, 1) \]
Good idea:
Use relative probabilistic calculation

\[P(\text{backprop}) = \text{Percentile(loss, recent losses)}^B \]
Example of probability calculation

CDF(loss) = 0.9

Loss = 2.3

CDF(loss) = 0.9

Probability = 0.96
Selective-Backprop approach

1. Forward propagate example through the network

2. Calculate usefulness of backpropping example based on its accuracy

 \[P(\text{Backprop}) = L_2 \text{Dist}^2(\text{Output}, \text{Target}) \]

3. Decide probabilistically if we should backprop
StaleSB reduces forward passes

1. Forward propagate example through the network
 every \(n \) epochs

2. Calculate usefulness of backpropping example based on its accuracy

3. Decide probabilistically if we should backprop
Evaluation of Selective Backprop
Datasets

CIFAR10
60,000 Training Images

CIFAR100
60,000 Training Images

SVHN
604,388 Training Images
Train CIFAR10 to 4.14% (1.4x Traditional’s final error)

SB: 1.5X faster
StaleSB: 2X faster
Train CIFAR100 to 25.5% (1.4x Traditional’s final error)

SB: 1.2X faster
StaleSB: 1.6X faster
Train SVHN to 1.72% (1.4x Traditional’s final error)

SB: 3.5X faster
StaleSB: 5X faster
SB on CIFAR10 targets hard examples

3% correct w/ Traditional
29% correct w/ SB

Output = [0.1, 0.3, 0.6]

Target confidence = 0.3
Selective-Backprop accelerates training

- Reduces time spent in the backwards pass by prioritizing high-loss examples
- SelectiveBackprop outperforms static approaches
 - Trains up to 3.5x faster compared to standard SGD
 - Trains 1.02-1.8X faster than state-of-the-art importance sampling approach
- Stale-SB further accelerates training
 - Trains on average 26% faster compared to SB

www.github.com/angelajiang/SelectiveBackprop
Compared approaches

Traditional
Classic SGD with no filtering

Katharopoulos18
State of the art importance sampling approach

Random
Random sampling approach

Selective-Backprop (Us)
Given 40 hours to train, Stale-SB provides lowest error
Most Pareto optimal points are SB or StaleSB

CIFAR10

- Given unlimited time to train, Traditional provides lowest error

CIFAR100

- h18, max S=50%
- rand, S=50%
- S=50%
- Stale-SB, S=50%
- Traditional S=100%
SB is robust to modest amounts of error

0.1% Randomized
SB, S=33%, Err=3.73%
Traditional S=100%, Err=3.41%

10% Randomized
SB, S=33%, Err=6.72%
Traditional S=100%, Err=6.92%

20% Randomized
SB, S=33%, Err=9.33%
Traditional S=100%, Err=8.12%