Thread-Level Parallelism

15-213 / 18-213 / 14-513 / 15-513: Introduction to Computer Systems
27th Lecture, December 3rd, 2019
Today

- **Parallel Computing Hardware**
 - Multicore
 - Multiple separate processors on single chip
 - Hyperthreading
 - Efficient execution of multiple threads on single core

- **Consistency Models**
 - What happens when multiple threads are reading & writing shared state

- **Thread-Level Parallelism**
 - Splitting program into independent tasks
 - Example: Parallel summation
 - Examine some performance artifacts
 - Divide-and-conquer parallelism
 - Example: Parallel quicksort
Typical Multicore Processor

- Multiple processors operating with coherent view of memory
Out-of-Order Processor Structure

- Instruction control dynamically converts program into stream of operations
- Operations mapped onto functional units to execute in parallel
Hyperthreading Implementation

- Replicate instruction control to process K instruction streams
- K copies of all registers
- Share functional units
Benchmark Machine

- Get data about machine from /proc/cpuinfo
- Shark Machines
 - Intel Xeon E5520 @ 2.27 GHz
 - Nehalem, ca. 2010
 - 8 Cores
 - Each can do 2x hyperthreading
Exploiting parallel execution

- **So far, we’ve used threads to deal with I/O delays**
 - e.g., one thread per client to prevent one from delaying another

- **Multi-core CPUs offer another opportunity**
 - Spread work over threads executing in parallel on N cores
 - Happens automatically, if many independent tasks
 - e.g., running many applications or serving many clients
 - Can also write code to make one big task go faster
 - by organizing it as multiple parallel sub-tasks

- **Shark machines can execute 16 threads at once**
 - 8 cores, each with 2-way hyperthreading
 - Theoretical speedup of 16X
 - never achieved in our benchmarks
Memory Consistency

What are the possible values printed?

- Depends on memory consistency model
- Abstract model of how hardware handles concurrent accesses
Non-Coherent Cache Scenario

- Write-back caches, without coordination between them

```java
int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
```

At later points, a:2 and b:200 are written back to main memory
Snoopy Caches

- Tag each cache block with state
 - Invalid: Cannot use value
 - Shared: Readable copy
 - Exclusive: Writeable copy

```c
int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
```

Thread1 Cache

- E a: 2

Thread2 Cache

- E b: 200

Main Memory

- a: 1
- b: 100
Snoopy Caches

- Tag each cache block with state
 - Invalid: Cannot use value
 - Shared: Readable copy
 - Exclusive: Writeable copy

```java
int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
```

- When cache sees request for one of its E-tagged blocks
 - Supply value from cache (Note: value in memory may be stale)
 - Set tag to S
Memory Consistency

What are the possible values printed?

- Depends on memory consistency model
- Abstract model of how hardware handles concurrent accesses
Memory Consistency

- **What are the possible values printed?**
 - Depends on memory consistency model
 - Abstract model of how hardware handles concurrent accesses

- **Sequential consistency**
 - As if only one operation at a time, in an order consistent with the order of operations within each thread
 - Thus, overall effect consistent with each individual thread but otherwise allows an arbitrary interleaving
Sequential Consistency Example

```
int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
```

Thread consistency constraints

```
Wa ———— Rb
Wb ———— Ra
```

Impossible outputs

- 100, 1 and 1, 100
- Would require reaching both Ra and Rb before either Wa or Wb
Non-Coherent Cache Scenario

- Write-back caches, without coordination between them

```java
int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
```

Print 1

Print 100

Sequentially consistent? No!
Non-Sequentially Consistent Scenario

- Coherent caches, but thread consistency constraints violated due to \textit{operation reordering}

- Arch lets reads finish before writes b/c single thread accesses different memory locations
Non-Sequentially Consistent Scenario

Fix: Add `SFENCE` instructions between Wa & Rb and Wb & Ra

Instruction-level parallelism
Memory Models

- **Sequentially Consistent:**
 - Each thread executes in proper order, any interleaving

- **To ensure, requires**
 - Proper cache/memory behavior
 - Proper intra-thread ordering constraints
Today

- Parallel Computing Hardware
 - Multicore
 - Multiple separate processors on single chip
 - Hyperthreading
 - Efficient execution of multiple threads on single core

- Consistency Models
 - What happens when multiple threads are reading & writing shared state

- Thread-Level Parallelism
 - Splitting program into independent tasks
 - Example: Parallel summation
 - Examine some performance artifacts
 - Divide-and conquer parallelism
 - Example: Parallel quicksort
Summation Example

- Sum numbers 0, ..., N-1
 - Should add up to \((N-1)*N/2\)

- Partition into K ranges
 - \(\lfloor N/K \rfloor\) values each
 - Each of the \(t\) threads processes 1 range
 - Accumulate leftover values serially

- Method #1: All threads update single global variable
 - 1A: No synchronization
 - 1B: Synchronize with pthread semaphore
 - 1C: Synchronize with pthread mutex
 - “Binary” semaphore. Only values 0 & 1
Accumulating in Single Global Variable: Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data_t global_sum;
Accumulating in Single Global Variable: Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data_t global_sum;

/* Mutex & semaphore for global sum */
sem_t semaphore;
pthread_mutex_t mutex;
Accumulating in Single Global Variable: Declarations

typedef unsigned long data_t;
/* Single accumulator */
volatile data_t global_sum;

/* Mutex & semaphore for global sum */
sem_t semaphore;
pthread_mutex_t mutex;

/* Number of elements summed by each thread */
size_t nelems_per_thread;

/* Keep track of thread IDs */
pthread_t tid[MAXTHREADS];

/* Identify each thread */
int myid[MAXTHREADS];
Accumulating in Single Global Variable: Operation

```c
nelems_per_thread = nelems / nthreads;

/* Set global value */
global_sum = 0;

/* Create threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {
    myid[i] = i;
    Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);
}
for (i = 0; i < nthreads; i++)
    Pthread_join(tid[i], NULL);

result = global_sum;

/* Add leftover elements */
for (e = nthreads * nelems_per_thread; e < nelems; e++)
    result += e;
```
Thread Function: No Synchronization

```c
void *sum_race(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;

    for (i = start; i < end; i++) {
        global_sum += i;
    }
    return NULL;
}
```
Unsynchronized Performance

- $N = 2^{30}$
- Best speedup = 2.86X
- Gets **wrong answer** when > 1 thread! Why?
Thread Function: Semaphore / Mutex

Semaphore

```c
void *sum_sem(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;

    for (i = start; i < end; i++) {
        sem_wait(&semaphore);
        global_sum += i;
        sem_post(&semaphore);
    }
    return NULL;
}
```

Mutex

```c
pthread_mutex_lock(&mutex);
global_sum += i;
pthread_mutex_unlock(&mutex);
```
Semaphore / Mutex Performance

- Terrible Performance
 - 2.5 seconds ➔ ~10 minutes
- Mutex 3X faster than semaphore
- Clearly, neither is successful

What is main reason for poor performance?
Separate Accumulation

- **Method #2:** Each thread accumulates into separate variable
 - 2A: Accumulate in contiguous array elements
 - 2B: Accumulate in spaced-apart array elements
 - 2C: Accumulate in registers

```c
/* Partial sum computed by each thread */
data_t psum[MaxThreads*MaxSpacing];

/* Spacing between accumulators */
size_t spacing = 1;
```
Separate Accumulation: Operation

```c
nelems_per_thread = nelems / nthreads;

/* Create threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {
    myid[i] = i;
    psum[i*spacing] = 0;
    Pthread_create(&tid[i], NULL, thread_fun, &myid[i]);
}
for (i = 0; i < nthreads; i++)
    Pthread_join(tid[i], NULL);

result = 0;

/* Add up the partial sums computed by each thread */
for (i = 0; i < nthreads; i++)
    result += psum[i*spacing];

/* Add leftover elements */
for (e = nthreads * nelems_per_thread; e < nelems; e++)
    result += e;
```
Thread Function: Memory Accumulation

```c
void *sum_global(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;

    size_t index = myid * spacing;
    psum[index] = 0;
    for (i = start; i < end; i++) {
        psum[index] += i;
    }
    return NULL;
}
```

Where is the mutex?
Memory Accumulation Performance

- Clear threading advantage
 - Adjacent speedup: 5 X
 - Spaced-apart speedup: 13.3 X (Only observed speedup > 8)

- Why does spacing the accumulators apart matter?
False Sharing

- Coherence maintained on cache blocks
- To update \texttt{psum}[i], thread \textit{i} must have exclusive access
 - Threads sharing common cache block will keep fighting each other for access to block
False Sharing Performance

- Best spaced-apart performance 2.8 X better than best adjacent

- **Demonstrates cache block size = 64**
 - 8-byte values
 - No benefit increasing spacing beyond 8
void *sum_local(void *vargp)
{
 int myid = *((int *)vargp);
 size_t start = myid * nelems_per_thread;
 size_t end = start + nelems_per_thread;
 size_t i;
 size_t index = myid*spacing;
 data_t sum = 0;
 for (i = start; i < end; i++) {
 sum += i;
 }
 psum[index] = sum;
 return NULL;
}
Register Accumulation Performance

- Clear threading advantage
 - Speedup = 7.5 X

- 2X better than fastest memory accumulation

Beware the speedup metric!
Lessons learned

- Sharing memory can be expensive
 - Pay attention to true sharing
 - Pay attention to false sharing

- Use registers whenever possible
 - (Remember cachelab)
 - Use local cache whenever possible

- Deal with leftovers

- When examining performance, compare to best possible sequential implementation
Quiz Time!

Check out:

https://canvas.cmu.edu/courses/10968
A More Substantial Example: Sort

- Sort set of N random numbers
- Multiple possible algorithms
 - Use parallel version of quicksort
- Sequential quicksort of set of values X
 - Choose “pivot” p from X
 - Rearrange X into
 - L: Values ≤ p
 - R: Values ≥ p
 - Recursively sort L to get L’
 - Recursively sort R to get R’
 - Return L’ : p : R’
Sequential Quicksort Visualized
Sequential Quicksort Visualized
Sequential Quicksort Code

```c
void qsort_serial(data_t *base, size_t nele) {
    if (nele <= 1)
        return;
    if (nele == 2) {
        if (base[0] > base[1])
            swap(base, base+1);
        return;
    }

    /* Partition returns index of pivot */
    size_t m = partition(base, nele);
    if (m > 1)
        qsort_serial(base, m);
    if (nele-1 > m+1)
        qsort_serial(base+m+1, nele-m-1);
}
```

- **Sort nele elements starting at base**
 - Recursively sort L or R if has more than one element
Parallel Quicksort

- Parallel quicksort of set of values X
 - If $N \leq N_{\text{thresh}}$, do sequential quicksort
 - Else
 - Choose “pivot” p from X
 - Rearrange X into
 - L: Values $\leq p$
 - R: Values $\geq p$
 - Recursively spawn separate threads
 - Sort L to get L'
 - Sort R to get R'
 - Return $L' : p : R'$
Parallel Quicksort Visualized
Thread Structure: Sorting Tasks

- **Task**: Sort subrange of data
 - Specify as:
 - **base**: Starting address
 - **nele**: Number of elements in subrange
- **Run as separate thread**
Small Sort Task Operation

- Sort subrange using serial quicksort
Large Sort Task Operation

Partition Subrange

Spawn 2 tasks
Top-Level Function (Simplified)

```c
void tqsort(data_t *base, size_t nele) {
    init_task(nele);
    global_base = base;
    global_end = global_base + nele - 1;
    task_queue_ptr tq = new_task_queue();
    tqsort_helper(base, nele, tq);
    join_tasks(tq);
    free_task_queue(tq);
}
```

- Sets up data structures
- Calls recursive sort routine
- Keeps joining threads until none left
- Frees data structures
Recursive sort routine (Simplified)

/* Multi-threaded quicksort */
static void tqsort_helper(data_t *base, size_t nele, task_queue_ptr tq) {
 if (nele <= nele_max_sort_serial) {
 /* Use sequential sort */
 qsort_serial(base, nele);
 return;
 }
 sort_task_t *t = new_task(base, nele, tq);
 spawn_task(tq, sort_thread, (void *) t);
}

- Small partition: Sort serially
- Large partition: Spawn new sort task
Sort task thread (Simplified)

/* Thread routine for many-threaded quicksort */
static void *sort_thread(void *vargp) {
 sort_task_t *t = (sort_task_t *) vargp;
 data_t *base = t->base;
 size_t nele = t->nele;
 task_queue_ptr tq = t->tq;
 free(vargp);
 size_t m = partition(base, nele);
 if (m > 1)
 tqsort_helper(base, m, tq);
 if (nele-1 > m+1)
 tqsort_helper(base+m+1, nele-m-1, tq);
 return NULL;
}

■ Get task parameters
■ Perform partitioning step
■ Call recursive sort routine on each partition (if size of part > 1)
Parallel Quicksort Performance

- **Serial fraction**: Fraction of input at which do serial sort
- **Sort** 2^{27} (134,217,728) random values
- **Best speedup** = 6.84X
Parallel Quicksort Performance

- **Good performance over wide range of fraction values**
 - F too small: Not enough parallelism
 - F too large: Thread overhead too high
Amdahl’s Law

Overall problem
- T Total sequential time required
- p Fraction of total that can be sped up ($0 \leq p \leq 1$)
- k Speedup factor

Resulting Performance
- $T_k = pT/k + (1-p)T$
 - Portion which can be sped up runs k times faster
 - Portion which cannot be sped up stays the same
- Maximum possible speedup
 - $k = \infty$
 - $T_\infty = (1-p)T$
Amdahl’s Law Example

■ Overall problem
 ▪ $T = 10$ Total time required
 ▪ $p = 0.9$ Fraction of total which can be sped up
 ▪ $k = 9$ Speedup factor

■ Resulting Performance
 ▪ $T_g = 0.9 \times 10/9 + 0.1 \times 10 = 1.0 + 1.0 = 2.0$ (a 5x speedup)

■ Maximum possible speedup
 ▪ $T_\infty = 0.1 \times 10.0 = 1.0$ (a 10x speedup)
 ▪ With infinite parallel computing resources!
 ▪ Limit speedup shows algorithmic limitation
Amdahl’s Law & Parallel Quicksort

- **Sequential bottleneck**
 - Top-level partition: No speedup
 - Second level: $\leq 2X$ speedup
 - k^{th} level: $\leq 2^{k-1}X$ speedup

- **Implications**
 - Good performance for small-scale parallelism
 - Would need to parallelize partitioning step to get large-scale parallelism
 - Parallel Sorting by Regular Sampling
 - H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 1992
Parallelizing Partitioning Step

Parallel partitioning based on global p

Reassemble into partitions
Experience with Parallel Partitioning

- Could not obtain speedup
- Speculate: Too much data copying
 - Could not do everything within source array
 - Set up temporary space for reassembling partition
Lessons Learned

- **Must have parallelization strategy**
 - Partition into K independent parts
 - Divide-and-conquer

- **Inner loops must be synchronization free**
 - Synchronization operations very expensive

- **Watch out for hardware artifacts**
 - Need to understand processor & memory structure
 - Sharing and false sharing of global data

- **Beware of Amdahl’s Law**
 - Serial code can become bottleneck

- **You can do it!**
 - Achieving modest levels of parallelism is not difficult
 - Set up experimental framework and test multiple strategies