
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 14: Proxy Lab Part 2

Instructor: TA(s)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline
¢ Proxylab
¢ Threading
¢ Threads and Synchronization
¢ PXYDRIVE Demo

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

ProxyLab

¢ Checkpoint is worth 1%, due Thursday, Nov. 29th

¢ Final is worth 7%, due Thursday, Dec 6th

¢ You may use at most one grace / late day for each phase
¢ Last day to submit checkpoint: Friday, Nov. 30th

¢ Last day to submit final: Friday, Dec 7th

¢ There will be no extensions!

¢ You are submitting an entire project
§ Modify the makefile
§ Split source file into separate pieces

¢ Submit regularly to verify proxy builds on Autolab

¢ A proxy is a server process

§ It is expected to be long-lived
§ To not leak resources
§ To be robust against user input

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxies and Threads
¢ Network connections can be handled concurrently

§ Three approaches were discussed in lecture for doing so

§ Your proxy should (eventually) use threads

§ Threaded echo server is a good example of how to do this

¢ Multi-threaded cache design
§ Need to have multiple readers or one writer

§ Be careful how you use mutexes – you do not want to serialize your
readers

§ Be careful how you maintain your object age

¢ Tools
§ Use PXYDRIVE !

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some practice
¢ Get the tarball

¢ $ wget http://www.cs.cmu.edu/~213/
activities/pxydrive-tutorial2.tar

¢ $ tar –xvf pxydrive-tutorial.tar
¢ $ cd pxydrive-tutorial

http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1
¢ What happens when you haven’t implemented a concurrent

proxy and are expected to handle multiple requests?

¢ Open basic-concurrency.cmd

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1
¢ >generate random-text1.txt 2K

¢ Generates a 2K text file called random-text1.txt
¢ >generate random-text2.txt 4K

¢ Generates a 4K text file called random-text2.txt
¢ >serve s1

¢ Launches a server called s1
¢ >request r1 random-text1.txt s1

¢ Requests r1 from s1
¢ >request r2 random-text2.txt s1

¢ Requests r2 from s1
¢ >wait *

¢ Waits for all transactions to finish
¢ Needed in the trace, not in the command-line

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1
¢ >respond r2

¢ Respond to client with r2 (Out of order)
¢ >respond r1

¢ Respond to client with r1
¢ >trace r1

¢ Traces the transaction r1
¢ >check r1

¢ Checks the transaction r1
¢ >trace r2

¢ Traces the transaction r2
¢ >check r2

¢ Checks the transaction r2

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1
¢ Run trace with –f option:

¢ $./pxy/pxydrive –p ./serial-proxy
–f basic-concurrency.cmd

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What went wrong?

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Join / Detach
¢ Does the following code terminate? Why or why not?

int main(int argc, char** argv)
{
…

pthread_create(&tid, NULL, work, NULL);
if (pthread_join(tid, NULL) != 0) printf(“Done.\n”);

…
void* work(void* a)
{

pthread_detatch(pthread_self());
while(1);

}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Join / Detach cont.
¢ Does the following code terminate now? Why or why

not?

int main(int argc, char** argv)
{
…

pthread_create(&tid, NULL, work, NULL); sleep(1);
if (pthread_join(tid, NULL) != 0) printf(“Done.\n”);

…
void* work(void* a)
{

pthread_detach(pthread_self());
while(1);

}

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

When should threads detach?
¢ In general, pthreads will wait to be reaped via

pthread_join.

¢ When should this behavior be overridden?

¢ When termination status does not matter.
§ pthread_join provides a return value

¢ When result of thread is not needed.
§ When other threads do not depend on this thread having

completed

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads
¢ What is the range of value(s) that main will print?
¢ A programmer proposes removing j from thread and just

directly accessing count. Does the answer change?

volatile int count = 0;

void* thread(void* v)
{

int j = count;
j = j + 1;
count = j;

}

int main(int argc, char** argv)
{

pthread_t tid[2];
for(int i = 0; i < 2; i++)

pthread_create(&tid[i], NULL,
thread, NULL);

for (int i = 0; i < 2; i++)
pthread_join(tid[i]);

printf(“%d\n”, count);
return 0;

}

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 2
¢ What happens when we pass a statically

allocated connected descriptor to the peer
thread in our proxy?
connfd = Accept(listenfd, (SA *)&clientaddr,

&clientlen);
Pthread_create(&tid, NULL, thread, &connfd);

¢ $./pxy/pxydrive –f mixed-concurrency.cmd
–p ./static-concurrent-proxy

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What went wrong?

¢ This can happen due to a race condition between the assignment
statement in the peer thread and the accept statement in the main
thread!

¢ This can result if the local connfd variable in the peer thread gets the
descriptor number of the next connection

¢ Make sure to dynamically allocate memory for each connected
descriptor returned by accept!

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Synchronization
¢ Is not cheap

§ 100s of cycles just to acquire without waiting

¢ Is also not that expensive
§ Recall your malloc target of 15000kops => ~100 cycles

¢ May be necessary
§ Correctness is always more important than performance

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Which synchronization should I use?
¢ Counting a shared resource, such as shared buffers

§ Semaphore

¢ Exclusive access to one or more variables
§ Mutex

¢ Most operations are reading, rarely writing / modifying
§ RWLock

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Threads Revisited
¢ Which lock type should be used?
¢ Where should it be acquired / released?

volatile int count = 0;

void* thread(void* v)
{

int j = count;
j = j + 1;
count = j;

}

int main(int argc, char** argv)
{

pthread_t tid[2];
for(int i = 0; i < 2; i++)

pthread_create(&tid[i], NULL,
thread, NULL);

for (int i = 0; i < 2; i++)
pthread_join(tid[i]);

printf(“%d\n”, count);
return 0;

}

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Associating locks with data
¢ Given the following key-value store

§ Key and value have separate RWLocks: klock and vlock
§ When an entry is replaced, both locks are acquired.

¢ Describe why the printf may not be accurate.

...
pthread_rwlock_rdlock(klock);
match = search(k);
pthread_rwlock_unlock(klock);

if (match != -1)
{

pthread_rwlock_rdlock(vlock);
printf(“%zd\n”, space[match]);
pthread_rwlock_unlock(vlock);

}

typedef struct _data_t {
int key;
size_t value;

} data_t;

#define SIZE 10
data_t space[SIZE];
int search(int k)
{

for(int j = 0; j < SIZE; j++)
if (space[j].key == k) return j;

return -1;
}

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Locks gone wrong
1. RWLocks are particularly susceptible to which issue:
a. Starvation b. Livelock c. Deadlock

1. If some code acquires rwlocks as readers: LockA then
LockB, while other readers go LockB then LockA. What, if
any, order can a writer acquire both LockA and LockB?

No order is possible without a potential deadlock.

3. Design an approach to acquiring two semaphores that
avoids deadlock and livelock, while allowing progress to
other threads needing only one semaphore.

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 3
¢ Debugging a proxy that suffers race conditions
¢ Remember that one of the shared resource for all the proxy

threads is the cache
¢ $./pxy/pxydrive –f caching.cmd

–p ./race-proxy

¢ Do take some time understanding the trace file
for this tutorial

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What went wrong?

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What went wrong?
¢ We realize that resources r01n (may be different in your

case), was expected to be cached

¢ Let’s understand this scenario with two threads running
concurrently on the proxy.

¢ T1: At the time of check, T1 sees that it has cached the
requested object.

¢ Another thread, say T2: Is trying to add a new object to the
cache and is performing an eviction. This thread could
possibly delete the object from the cache after the time of
check but before T1 sends the cached object to the
requesting client (time-of-use)

¢ This is an example of the Time-of-check Time-of-use race
condition

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 4
¢ Debugging a proxy that suffers a deadlock
¢ Run the same trace but with another faulty proxy
¢ $./pxy/pxydrive –f caching.cmd

–p ./deadlocked-proxy

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What went wrong?

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What went wrong?
¢ We can notice a few timeout events and also some threads

were waiting for the event that caused timeout.
¢ Let’s consider two proxy threads T1 and T2 as usual.
¢ Suppose T1 holds a lock on a shared resource (could be the

cache in our case) and never releases it. (you might have
missed to perform pthread_unlock ! Or might have messed
with the order of locking and unlocking)

¢ Another thread, say T2: Is trying to hold a lock on the same
resource. (worse condition could be that it is already holding
a lock on another shared resource that T2 needs). T2 waits
for T1 to release the lock on the first resource and T1 in turn
waits for T2 to release lock on that another resource.

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxylab Reminders
¢ Plan out your implementation

§ “Weeks of programming can save you hours of planning”

§ – Anonymous

§ Arbitrarily using mutexes will not fix race conditions

¢ Read the writeup

¢ Submit your code (days) early
§ Test that the submission will build and run on Autolab

¢ Final exam is only a few weeks away!

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix
¢ Calling exit() will terminate all threads

¢ Calling pthread_join on a detached thread is technically
undefined behavior. Was defined as returning an error.

