Carnegie Mellon

Recitation 14: Proxy Lab Part 2

Instructor: TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Outline

Proxylab

Threading

Threads and Synchronization
PXYDRIVE Demo

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

ProxyLab

m Checkpoint is worth 1%, due Thursday, Nov. 29t

m Final is worth 7%, due Thursday, Dec 6"

m You may use at most one grace / late day for each phase
m Last day to submit checkpoint: Friday, Nov. 30t
m Last day to submit final: Friday, Dec 7t
m There will be no extensions!

m You are submitting an entire project
= Modify the makefile

= Split source file into separate pieces

m Submit regularly to verify proxy builds on Autolab
m A proxy is a server process

" |t is expected to be long-lived

" To not leak resources

" To be robust against user input

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Proxies and Threads

m Network connections can be handled concurrently

= Three approaches were discussed in lecture for doing so
= Your proxy should (eventually) use threads
" Threaded echo server is a good example of how to do this

m Multi-threaded cache design
" Need to have multiple readers or one writer

= Be careful how you use mutexes — you do not want to serialize your
readers

= Be careful how you maintain your object age

m Tools
= Use PXYDRIVE !

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

PENNSYLVANIA

15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Some practice

m Get the tarball

m $ wget http://www.cs.cmu.edu/~213/
activities/pxydrive-tutorial2.tar

m $ tar -xvf pxydrive-tutorial.tar

m $ cd pxydrive-tutorial

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar

Carnegie Mellon

PxYDRIVE Tutorial 1

m What happens when you haven’t implemented a concurrent
proxy and are expected to handle multiple requests?

m Open basic-concurrency.cmd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

PxYDRIVE Tutorial 1

m >generate random-textl.txt 2K

m Generates a 2K text file called random-text1.txt
m >generate random-text2.txt 4K

m Generates a 4K text file called random-text2.txt
m >serve sl

m Launches a server called s1
m >request rl random-textl.txt sl

m Requestsrl from sl
m >request r2 random-text2.txt sl

m Requestsr2 from sl
m >wait *

m Waits for all transactions to finish

m Needed in the trace, not in the command-line

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

PxYDRIVE Tutorial 1

m >respond r2

m Respond to client with r2 (Out of order)
m >respond rl

m Respond to client with rl
m >trace ril

m Traces the transaction rl
m >check ri

m Checks the transaction r1
m >trace r2

m Traces the transaction r2
m >check r2

m Checks the transaction r2

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

- CarnegicMellon
PXYDRIVE Tutorial 1
m Run trace with -f option:

m $./pxy/pxydrive -p ./serial-proxy
-f basic-concurrency.cmd

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

What went wrong?

>request rl random-textl.txt sl

Client: Requesting '/random-textl.txt' from angelshark.ics.cs.cmu.edu:27329

>request r2 random-text2.txt sl

Client: Requesting '/random-text2.txt' from angelshark.ics.cs.cmu.edu:27329

>wait

ERROR: Warning. 1 events still pending after timeout of 3000 milliseconds
Event[Request r2 requesting TIME=1.064 SERVER = s1 URI = /random-text2.txt]

># Proxy must have passed request r2 to server

># even though it has not yet completed ril.

>respond r2

ERROR: Invalid request ID 'r2'

>respond rl

Server responded to request rl with status ok

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Join / Detach

m Does the following code terminate? Why or why not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL);
if (pthread join(tid, NULL) '= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detatch(pthread self());
while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Join / Detach cont.

m Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL); sleep(l);
if (pthread join(tid, NULL) '= 0) printf(“Done.\n”);

void* work (void* a)

{
pthread detach(pthread self())

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

When should threads detach?

m In general, pthreads will wait to be reaped via
pthread_join.

m When should this behavior be overridden?

m When termination status does not matter.
= pthread_join provides a return value

m When result of thread is not needed.

"= When other threads do not depend on this thread having
completed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Threads

m What is the range of value(s) that main will print?

m A programmer proposes removing j from thread and just
directly accessing count. Does the answer change?

volatile int count = 0; int main(int argc, char** argv)

void* thread(void* v) { pthread_t tid[2];

{ for(int i = 0; i < 2; i++)
int Jj = count; pthread create(&tid[i], NULL,
1 =3+ 1 B thread, NULL);
count = j;

| for (int i = 0; i < 2; i++)
pthread join(tid[i]);
printf (“%d\n”, count) ;
return 0;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

PxYDRIVE Tutorial 2

m What happens when we pass a statically
allocated connected descriptor to the peer
thread in our proxy?

connfd = Accept(listenfd, (SA *) &clientaddr,
&clientlen) ;
Pthread create(&tid, NULL, thread, &connfd);

m $./pxy/pxydrive -f mixed-concurrency.cmd
-p ./static-concurrent-proxy

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

What went wrong?

ERROR: Request r5 generated status 'error'. Expecting 'ok' (Got empty response for URL request http://angelshark.ics.cs.cmu.edu:23346/random-text5.txt)
>check ré

ERROR: Request ré6 generated status 'error'. Expecting 'ok' (Source file is 12000 bytes long. Response file is 12637 bytes long)

>respond r4

Server responded to request r4 with status ok

>respond r2

xxx Error in './static-concurrent-proxy': double free or corruption (out): 0x00007ffdde90fedd xxx
xxx Error in './static-concurrent-proxy': double free or corruption (out): 0x00007ffdde90fedd xxkx

m This can happen due to a race condition between the assignment
statement in the peer thread and the accept statement in the main

thread!

m This can result if the local connfd variable in the peer thread gets the
descriptor number of the next connection

m Make sure to dynamically allocate memory for each connected
descriptor returned by accept!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

Synchronization

m Is not cheap
= 100s of cycles just to acquire without waiting

m Is also not that expensive
= Recall your malloc target of 15000kops => ~100 cycles

m May be necessary
® Correctness is always more important than performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

Carnegie Mellon

Which synchronization should | use?

m Counting a shared resource, such as shared buffers
= Semaphore

m Exclusive access to one or more variables
" Mutex

m Most operations are reading, rarely writing / modifying
= RWLock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19

Carnegie Mellon

Threads Revisited

m Which lock type should be used?
m Where should it be acquired / released?

volatile int count = 0; int main(int argc, char** argv)

void* thread(void* v) { pthread_t tid[2];

-t for(int i = 0; i < 2; i++)
%nt'? = count; pthread create(&tid[i], NULL,
) =) t %; - thread, NULL);
count = j;

y for (int 1 = 0; i < 2; 1i++)
pthread join(tid[i]);
printf (“%d\n”, count) ;
return 0;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20

Carnegie Mellon

Associating locks with data

m Given the following key-value store
= Key and value have separate RWLocks: klock and vlock
= When an entry is replaced, both locks are acquired.

m Describe why the printf may not be accurate.

typedef struct _data t {
int key;
size t value;

pthread rwlock rdlock (klock);
match = search(k);

} data t; pthread rwlock unlock (klock);

#define SIZE 10 if (match I= -1)

data t space[SIZE]; {

int géarch(int k) pthread rwlock rdlock (vlock);

{ printf (“%$zd\n”, space[match]);
for(int § = 0; j < SIZE; j++) pthread rwlock unlock (vlock);

if (space[]j] .key == k) return j; }

return -1;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21

Carnegie Mellon

Locks gone wrong

1. RWLocks are particularly susceptible to which issue:

a. b. Livelock c. Deadlock

1. If some code acquires rwlocks as readers: LockA then
LockB, while other readers go LockB then LockA. What, if
any, order can a writer acquire both LockA and LockB?

No order is possible without a potential deadlock.

3. Design an approach to acquiring two semaphores that
avoids deadlock and livelock, while allowing progress to
other threads needing only one semaphore.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22

Carnegie Mellon

PxYDRIVE Tutorial 3

m Debugging a proxy that suffers race conditions
m Remember that one of the shared resource for all the proxy
threads is the cache
m $./pxy/pxydrive -f caching.cmd
-p ./race-proxy

m Do take some time understanding the trace file
for this tutorial

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23

Carnegie Mellon

What went wrong?

"# Make sure initial requests have not been evicted
>request r@ln random-text®l.txt sl
Client: Requesting '/random-text@1.txt' from angelshark.ics.cs.cmu.edu:10401
>request r02n random-text@2.txt sl
Client: Requesting '/random-text@2.txt' from angelshark.ics.cs.cmu.edu:10401
>request r@3n random-text@3.txt si

Requesting '/random-text@3.txt' from angelshark.ics.cs.cmu.edu:10401

== Trace of request ro@iln
Initial request by client had header:

GET http://angelshark.ics.cs.cmu.edu:10401/random-text@1.txt HTTP/1.0\r\n
Host: angelshark.ics.cs.cmu.edu:10401\r\n

Request-ID: r@in\r\n

Response: Deferred\r\n

Connection: close\r\n

Proxy—Connection: close \r\n

User—Agent: CMU/1.0 Iguana/20180704 PxyDrive/0.0.1\r\n

\r\n

Message received by server had header:

GET /random-text@l1.txt HTTP/1.0\r\n

User—-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gecko/20100101 Firefox/45.8\r\n
Connection: close\r\n

Proxy—-Connection: close\r\n

Host: angelshark.ics.cs.cmu.edu:10401\r\n

Request-ID: r@in\r\n

Response: Deferred\r\n

\r\n

Reponse NOT sent by server

Response NOT received by client

Response status: ok
Source file in ./source files/random/random-text01.txt
Request status: requesting
>check r@ln
ERROR: Request r@ln generated status 'requesting'. Expecting 'ok

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

What went wrong?

m We realize that resources rO1n (may be different in your
case), was expected to be cached

m Let’s understand this scenario with two threads running
concurrently on the proxy.

m T1: At the time of check, T1 sees that it has cached the
requested object.

m Another thread, say T2: Is trying to add a new object to the
cache and is performing an eviction. This thread could
possibly delete the object from the cache after the time of
check but before T1 sends the cached object to the
requesting client (time-of-use)

m This is an example of the Time-of-check Time-of-use race
condition

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25

Carnegie Mellon

PxYDRIVE Tutorial 4

m Debugging a proxy that suffers a deadlock
m Run the same trace but with another faulty proxy
m $./pxy/pxydrive -f caching.cmd

-p ./deadlocked-proxy

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26

Carnegie Mellon

What went wrong?

># Check that have initial requests in cache (and mark them as used)
>request r@lc random-text@l.txt sl

Client: Requesting '/random-text@l.txt' from angelshark.ics.cs.cmu.edu:7249
>request r02c random-text02.txt sl

Client: Requesting '/random-text@2.txt' from angelshark.ics.cs.cmu.edu:7249

>request r03c random-text03.txt sl

Client: Requesting '/random-text@3.txt' from angelshark.ics.cs.cmu.edu:7249

>wait *

ERROR: Warning. 2 events still pending after timeout of 3000 milliseconds
Event[Request r@3c requesting TIME=6.355 SERVER = s1 URI = /random-text@3.txt]
Event[Request r@2c requesting TIME=6.355 SERVER = s1 URI = /random-text02.txt]

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27

Carnegie Mellon

What went wrong?

m We can notice a few timeout events and also some threads
were waiting for the event that caused timeout.

m Let’s consider two proxy threads T1 and T2 as usual.

m Suppose T1 holds a lock on a shared resource (could be the
cache in our case) and never releases it. (you might have
missed to perform pthread_unlock ! Or might have messed
with the order of locking and unlocking)

m Another thread, say T2: Is trying to hold a lock on the same
resource. (worse condition could be that it is already holding
a lock on another shared resource that T2 needs). T2 waits
for T1 to release the lock on the first resource and T1 in turn
waits for T2 to release lock on that another resource.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28

Carnegie Mellon

Proxylab Reminders

m Plan out your implementation

= “Weeks of programming can save you hours of planning”
= — Anonymous

= Arbitrarily using mutexes will not fix race conditions

m Read the writeup

m Submit your code (days) early
= Test that the submission will build and run on Autolab

m Final exam is only a few weeks away!

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29

Appendix

m Calling exit() will terminate all threads

m Calling pthread _join on a detached thread is technically
undefined behavior. Was defined as returning an error.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30

