
Carnegie Mellon

1 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 12: ProxyLab Part 1

Instructor: TA(s)

Carnegie Mellon

2 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Proxies
 Networking
 PXYDRIVE Demo

Carnegie Mellon

3 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proxy Lab

 Checkpoint is worth 1%, due Thursday, Nov. 29th
 Final is worth 7%, due Thursday, Dec 6th

 You may use at most one grace / late day for each phase
 Last day to submit checkpoint: Friday, Nov. 30th
 Last day to submit final: Friday, Dec 7th
 There will be no extensions!

 You are submitting an entire project
 Modify the makefile

 Split source file into separate pieces

 Submit regularly to verify proxy builds on Autolab

 Your proxy is a server, it should not crash!

Carnegie Mellon

4 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Why Proxies?

 Proxies are both clients and servers
 Can perform useful functions as requests and responses pass by

 Examples: Caching, logging, anonymization, filtering, transcoding

Client

A

Proxy

cache

Origin

Server

Request foo.html

Request foo.html

foo.html

foo.html

Client

B

Request foo.html

foo.html

Carnegie Mellon

5 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

5. Drop client
4. Disconnect client

3. Exchange

data

2. Start client 1. Start server

Client /
Server
Session

Echo

Server
+ Client
Structure

Client Server

rio_readlineb

rio_writen
rio_readlineb

fputs

fgets

rio_writen

Connection

request

rio_readlineb

close

close
EOF

Await connection

request from client
accept

open_listenfd

open_clientfd

Carnegie Mellon

6 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Transferring HTTP Data

If something requests a file from a web server,
 how does it know that the transfer is complete?

A) It reads a NULL byte.
B) The connection closes.
C) It reads a blank line.
D) The HTTP header specifies the number of bytes to receive.
E) The reading function receives EOF.

Carnegie Mellon

7 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

8 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Introducing PXYDRIVE1

 A REPL for testing your proxy implementation
 We also grade using this

 Typical pre-f18 proxy debugging experience:
 Open up three terminals:

for Tiny server, gdb proxy and curl
 Can make multiple requests, but need more terminals

for multiple instances of the Tiny server
 If the data is corrupted, need to manually inspect lines

of gibberish binary data to check error

 Not anymore with PXYDRIVE!

1 Not typing PXYDRIVE in small-caps is a style violation.

Carnegie Mellon

9 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Introducing PXYDRIVE

 General workflow
 Generate text and

binary data to test
your proxy with

 Create (multiple) server
 Make transactions
 Trace transactions to

inspect headers and
response data

 Transaction

Carnegie Mellon

10 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Some practice

 Get the tarball

 $ wget http://www.cs.cmu.edu/~213/
 activities/pxydrive-tutorial.tar

 $ tar –xvf pxydrive-tutorial.tar
 $ cd pxydrive-tutorial

http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar
http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar
http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar
http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar
http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar
http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar
http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar
http://http/www.cs.cmu.edu/~213/activities/pxydrive-tutorial.tar

Carnegie Mellon

11 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Trying out PXYDRIVE

 It’s a REPL: the user can run commands

 $./pxy/pxydrive
 Just start PXYDRIVE
 Try entering commands:

 >help
 >help help help help help help...
 >quit

 $./pxy/pxydrive –p ./proxy-ref
 Starts PXYDRIVE and specifies a proxy to run
 Proxy set up at <someshark>:30104
 Picks the right port and starts the proxy
 ./proxy-ref is the reference proxy

Carnegie Mellon

12 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1

 Introducing basic procedures:
generate data, create server, fetch / request file from server,
trace transaction

 Open s01-basic-fetch.cmd

Carnegie Mellon

13 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1

 >generate data1.txt 1K
 Generates a 1K text file called data1.txt

 >serve s1
 Launches a server called s1

 >fetch f1 data1.txt s1
 Fetches data1.txt from server s1, in a transaction called f1

 >wait *
 Waits for all transactions to finish
 Needed in the trace, not in the command-line

 >trace f1
 Traces the transaction f1

 >check f1
 Checks the transaction f1

Carnegie Mellon

14 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1

 Run trace with –f option:

 $./pxy/pxydrive –p ./proxy-ref
 –f s01-basic-fetch.cmd

Carnegie Mellon

15 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Look at the trace of the transaction!

 Identify:
 GET command
 Host header
 Other headers
 Request from client to proxy
 Request from proxy to server
 Response by server to proxy
 Response by proxy to client

Carnegie Mellon

16 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1

 Run a different trace

 $./pxy/pxydrive –p ./proxy-ref
 –f s02-basic-request.cmd

 You should get a different output from the first trace
 Why? Let’s look at this trace...

Carnegie Mellon

17 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1

 >generate data1.txt 1K
 >serve s1
 >request r1 data1.txt s1

 Requests data1.txt from server s1, in a transaction called r1
 >wait *
 >trace r1
 >respond r1

 Allow server to respond to the transaction r1
 >wait *
 >trace r1
 >check f1

 Checks the transaction f1

Carnegie Mellon

18 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 1

 The fetch command makes the server immediately respond
to a request.

 All steps of a transaction is complete after a fetch.

 The request command does not complete a transaction.
 A request needs a respond to complete its transaction.

fetch

Client Proxy Server

request

Client Proxy Server

respond

Carnegie Mellon

19 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 2

 Debugging a proxy that clobbers responses
 Run the same trace but with a faulty proxy

 $./pxy/pxydrive –f s01-basic-fetch.cmd

 –p ./proxy-corrupt

Carnegie Mellon

20 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What went wrong?

Carnegie Mellon

21 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 3

 Debugging a proxy that clobbers headers
 Run the same trace but with another faulty proxy

 $./pxy/pxydrive –f s01-basic-fetch.cmd

 –p ./proxy-strip –S 3

 -S specifies strictness level

Carnegie Mellon

22 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What went wrong?

Carnegie Mellon

23 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 4

 Debugging a proxy that crashes
 Run the same trace but with yet another faulty proxy

 $./pxy/pxydrive –f s03-overrun.cmd

 –p ./proxy-overrun

 Is the error message helpful?

Carnegie Mellon

24 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

PXYDRIVE Tutorial 4

 We resort to multi-window debugging
 Set up another window and run GDB in one:

 $ gdb ./proxy-overrun
 (gdb) run 15213

 In the other window, run PXYDRIVE:

 $./pxy/pxydrive.py –P localhost:XXXXX

 –f s03-overrun.cmd
 -P specifies the host and port the proxy is running on

./port-for-user.pl
Get your unique port!

Carnegie Mellon

25 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Reminders

 Read the writeup

 Start early

 Remember, only one grace /
late day per phase

 Come to office hours this week, before it gets crowded!

 Work incrementally and take breaks

Carnegie Mellon

26 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echoserver,
echoclient

Appendix on echoserver / client

Carnegie Mellon

27 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Demo

 See the instructions written in the telnet results to set up
the echo server. Get someone nearby to connect using the
echo client.

 What does echoserver output? (Sample output:)
$./echoserver 10101

Accepted connection from hammerheadshark.ics.cs.cmu.edu:46422

hammerheadshark.ics.cs.cmu.edu:46422 sent 6 bytes

Disconnected from hammerheadshark.ics.cs.cmu.edu:46422

Server

listening

port Client

host

Client

port

Carnegie Mellon

28 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Demo

 Look at echoclient.c

 Opens a connection to the server
 Reads/writes from the server

 Look at echoserver output
 Why is the printed client port different from the

server’s listening port?

 Server opens one “listening” port
 Incoming clients connect to this port

 Once server accepts a connection, it talks to client on a
different “ephemeral” port

HTTP/1.1 200 OK Content-Type: text/html…

Client connects to server

GET /~213/recitations/rec12.html HTTP/1.0

Listening port

Ephemeral port

Carnegie Mellon

29 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Demo

 Try to connect two clients to the same server.
 What happens?

 Second client has to wait for first client to finish!
 Server doesn’t even accept second client’s connection

 Where/why are we getting stuck?

 Because we’re stuck in echo() talking to the first client,
echoserver can’t handle any more clients

 Solution: multi-threading

Carnegie Mellon

30 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server Multithreaded

 How might we make this server multithreaded?

 (Don’t look at echoserver_t.c)
 while (1) {

 // Allocate space on the stack for client info

 client_info client_data;

 client_info *client = &client_data;

 // Initialize the length of the address

 client->addrlen = sizeof(client->addr);

 // Accept() will block until a client connects to the port

 client->connfd = Accept(listenfd,

 (SA *) &client->addr, &client->addrlen);

 // Connection is established; echo to client

 echo(client);

 }

Carnegie Mellon

31 Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Echo Server Multithreaded

 echoserver_t.c isn’t too different from echoserver.c

 To see the changes: `diff echoserver.c echoserver_t.c`
 Making your proxy multithreaded will be very similar
 However, don’t underestimate the difficulty of addressing

race conditions between threads!
 Definitely the hardest part of proxylab

 More on this next time...

