Carnegie Mellon

15-213 Recitation: C Review

TA's
1 Oct 2018

Agenda

m Logistics

m Attack Lab Conclusion
m C Assessment

m C Programming Style
m C Exercise

m Cache Lab Overview

m Appendix:
m Valgrind
m Clang /LLVM
m Cache Structure

Logistics

m Attack Lab is due tomorrow at midnight!
m Come to office hours for help

m rtarget phase 3 is only worth 5 points
m 0.2% of your grade = 0% of your grade

m Cache Lab will be released shortly thereafter!

Attack Lab Conclusion

m Don’t use functions vulnerable to buffer overflow (like gets)

m Use functions that allow you to specify buffer lengths:
m fgets instead of gets
m strncpy instead of strcpy
m strncatinstead of strcat
m snprintf instead of sprint

m Use sscanf and fscanf with input lengths (%213s)

m Stack protection makes buffer overflow very hard...
m But very hard # impossible!

C Assessment

m 3.5 Basic C Programming Questions

m Take some time to write down your answer for each guestion

C Assessment: Question 1

m Which lines have a problem and how can you fix it?

1 int main(int argc, char** argv) {

2 int *a = (int*) malloc(213 * sizeof(int));
3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=1i;

5 else a[i]=-1i;

6 }

7 return 0;

8

C Assessment: Question 1

m malloc can fail!

1 int main(int argc, char** argv) {

2 int *a = (int*) malloc(213 * sizeof(int));
if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == @) a[i]=1i;

5 else a[i]=-1;

6 }

7 return 0;

8 }

C Assessment: Question 1

m Allocated memory is not initialized!

1 int main(int argc, char** argv) {

2 int *a = (int*) calloc(213, sizeof(int));
if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == 0) a[i]=i;

5 else a[i]=-1;

6 }

7 return 0;

8 }

C Assessment: Question 1

m Declaring variables inside a for loop requires -std=c99

1 int main(int argc, char** argv) {

2 int *a = (int*) calloc(213, sizeof(int));
if (a == NULL) return 0;

3 for (int i=0; i<213; i++) {

4 if (a[i] == @) a[i]=1i;

5 else a[i]=-1;

6 }

7 return 0;

8 }

C Assessment: Question 1

m All allocated memory must be freed!

1 int main(int argc, char** argv) {

2 int *a = (int*) calloc(213, sizeof(int));
if (a == NULL) return 0;

3 for (int i1=0; i<213; i++) {

4 if (a[i] == @) a[i]=1i;

5 else a[i]=-1;

6 }
free(a);

7 return 0;

Carnegie Mellon

C Assessment: Question 2

m What are the values of A and B?
#define SUM(x, y) X + y

int sum(int x, int y) {
return x + y;

}
int A = SUM(2, 1) * 3;
int B = sum(2, 1) * 3;

C Assessment: Question 2

m What is wrong with our macro SUM?
#define SUM(x, y) X + y

int sum(int x, int y) {
return x + y;

}
int A = SUM(2, 1) * 3; // A=24+1%3=51I?
int B = sum(2, 1) * 3; // B =6

C Assessment: Question 2

m Use parenthesis around result!
#define SUM(x, y) (x + vy)

int sum(int x, int y) {
return x + y;

}
int A = SUM(2, 1) * 3; // A =6
int B = sum(2, 1) * 3; // B =6

Carnegie Mellon

C Assessment: Question 2 Part B

m What are the values of A and B?
#define MULT(x, y) (x * y)

int mult(int x, int y) {
return x * y;

}
int A = MULT(2, @ + 1) * 3;
int B = mult(2, @ + 1) * 3;

Carnegie Mellon

C Assessment: Question 2 Part B

m What is wrong with our macro MULT?
#define MULT(x, y) (x * vy)

int mult(int x, int y) {
return x * y;

}
int A = MULT(2, © + 1) * 3; // A= (2%0+1)*3 =321
int B = mult(2, @ + 1) * 3; // B =6

Carnegie Mellon

C Assessment: Question 2 Part B

m Use parenthesis around macro arguments (and result)!
#define MULT(x, y) ((x) * (y))

int mult(int x, int y) {
return x * y;

}
int A = MULT(2, © + 1) * 3; // A= ((2) * (@ +1)) *3=6¢6
int B = mult(2, @ + 1) * 3; // B =6

C Assessment: Question 2

« Macros are good for compile-time decisions
« Assert, requires, etc
» dbg_print

 Macros are not functions and should not be used
Interchangeably

C Assessment: Question 3

m What lines make safe_int_malloc not so safe?

int *safe_int malloc(int *pointer) {
pointer = malloc(sizeof(int));
if (pointer == NULL) exit(-1);
return &pointer;

vi »h W N R

C Assessment: Question 3

m pointer is alocal copy of the pointer!

int *safe_int malloc(int **pointer) {
*pointer = malloc(sizeof(int));
if (pointer == NULL) exit(-1);
return &pointer;

vi »h W N R

C Assessment: Question 3

m &pointer is a location on the stack in safe_int _malloc’s frame!

int **safe_int malloc(int **pointer) {
*pointer = malloc(sizeof(int));
if (pointer == NULL) exit(-1);
return pointer;

vi »h W N R

C Assessment Conclusion

m Did you answer every question correctly? If not...
m Refer the C Bootcamp slides

m Was the test so easy you were bored? If not...
m Refer the C Bootcamp slides

m When in doubt...
m Refer the C Bootcamp slides

m This will be very important for the rest of this class, so make sure you are
comfortable with the material covered or come to the C Bootcamp!

C Programming Style

m Document your code with comments

m Check error and failure conditions

m Write modular code

m Use consistent formatting

m Avoid memory and file descriptor leaks

m Warning: Dr. Evil has returned to grade style on Cache Lab! ©
m Refer to full 213 Style Guide: http://cs.cmu.edu/~213/codeStyle.html

http://cs.cmu.edu/~213/codeStyle.html

C Exercise

m Learn to use getopt
m Extremely useful for Cache Lab
m Processes command line arguments

m Let’s write a Pythagorean Triples Solver!
m Pair up!
m Login to a shark machine
m$ wget http://cs.cmu.edu/~213/recitations/rec6.tar
m $ tar xvf recé6.tar
m$ cd recé

m But first, a simple getopt example...
m$ vim getopt-example.c

http://cs.cmu.edu/~213/recitations/rec6.tar

C Exercise: $ man 3 getopt

m int getopt(int argc, char * const argv[], const char
*optstring);

m getopt returns -1 when done parsing

m optstring is string with command line arguments
m Characters followed by colon require arguments
m Find argument text in char *optarg
m getopt can’t find argument or finds illegal argument sets optarg to “?*
m Example: “abc:d:”

m a and b are boolean arguments (not followed by text)
m c and d are followed by text (found in char *optarg)

C Exercise: C Hints and Math Reminders

m a’+ b? = c?
m >a=VcZ2-bh?
m >b=vVcz2-a?
m =>c=Va2+b?
||

= 32 4 42 = 52

m String to float in C:
#include <stdlib.h>

float atof(const char *str);

m Square root in C:
#include <math.h>
float sqrt(float x);

Carnegie Mellon

Cache Lab Overview

m Programs exhibiting locality run a lot faster!
m Temporal Locality — same item referenced again
m Spatial Locality — nearby items referenced again

copyi]

16000 -
14000 -

12000 -

m Cache Lab’s Goal:
m Understand how L1, L2, ... etc. caches work oo ekl

m Optimize memory dependent code to minimize 6000 - " “
cache misses and evictions 000 |
-

m Noticeable increase in speed 2000 -
512k
2m

10000

Read throughput (MB/s)

. "2k
m The use of git is required (affects your style et 7 G
grade) =

m Commit regularly with meaningful commit messages

128m

If you get stuck...

m Reread the writeup

m Look at CS:APP Chapter 6

m Review lecture notes (http://cs.cmu.edu/~213)

m Come to Office Hours (Sunday to Thursday, 5-9pm WH-5207)
m Post private question on Piazza

m man malloc, man valgrind, man gdb

http://cs.cmu.edu/~213

Cache Lab Tips!

m Review cache and memory lectures
m Ask if you don’t understand something

m Start early, this can be a challenging lab!

m Don’t get discouraged!

m If you try something that doesn't work, take a well deserved break,
and then try again

m Finally, Good luck on Cache Lab!

Appendix

m Valgrind
m Clang / LLVM
m Cache Structure

Appendix: Valgrind

m Tool used for debugging memory use
m Finds many potential memory leaks and double frees
m Shows heap usage over time
m Detects invalid memory reads and writes
m To learn more... man valgrind

m Finding memory leaks

m $ valgrind -leak-resolution=high -leak-check=full -show-
reachable=yes -track-fds=yes ./myProgram argl arg2

Appendix: Clang / LLVM

m Clang is a (gcc equivalent) C compiler
m Support for code analyses and transformation
m Compiler will check you variable usage and declarations
m Compiler will create code recording all memory accesses to a file
m Useful for Cache Lab Part B (Matrix Transpose)

Appendix: Cache Structure

E = 2¢ lines per set
A

Address of word:
XX | t bits | s bits |bbit5|

= 2 sets < N N

tag set block

index offset

0 0000000000000 OPOINOSONONOSNOSEOOEOIOIEPS
o000
\
data begins at this offset
v tag oj1|2] B-1
valid bit N~

B = 2 bytes per cache block (the data)

