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Moore’s Law Origins

April 19, 1965
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Moore’s Law Origins

Moore’s Thesis
n Minimize price per 

device 
n Optimum number of 

devices / chip increasing 
2x / year

Later
n 2x / 2 years
n “Moore’s Prediction”

1965: 50

1970: 1000
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Moore’s Law: 50+ Years
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Moore’s Law: 50+ Years

Sample of
130 processor chips
Wikipedia: 

Transistor_count
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Moore’s Law Benefits

1976 Cray 1
n 250 M Ops/second
n ~170,000 chips
n 0.5B transistors
n 5,000 kg, 115 KW
n $9M
n 80 manufactured

2018 iPhone XS
n > 10 B Ops/second
n 8 chips
n 6.9 B transistors (CPU only)
n 177 g, < 5 W
n $999
n ~9 million sold in first 7 days
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What Moore’s Law Has Meant

1965 Consumer 
Product

2018 Consumer 
Product

Apple A12
6.9 B transistors

(not to scale)
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Visualizing Moore’s Law to Date

Intel 4004
1970

2,300 transistors

Apple A12
2018

6.9 B transistors

If transistors were the size of a grain of sand

0.1 g

300 kg
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What Does 6.9 Billion Transistors 
Provide?

4 CPUs
n 2 high performance
n 4 low power

4 GPUs
n Graphics/image/video 

processing

Neural Engine
n For AI applications

Lots of specialized logic
n Video encode / decode
n Image stitching
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Moore’s Law Economics

Capital +
R&D 

Investment

New Technology

Product
Design

Sales $$Better
Products

Consumer products sustain the
$300B semiconductor industry
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What Moore’s Law Has Meant
20 versions of iPhone since 2007
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What Moore’s Law Could Mean

2018 Consumer 
Product

2065 Consumer Product

n Portable
n Low power
n Will drive markets & 

innovation
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Requirements for Future Technology

Must be suitable for portable, low-power operation
n Consumer products
n Internet of Things components
n Not cryogenic, not quantum

Must be inexpensive to manufacture
n Comparable to current semiconductor technology

l O(1) cost to make chip with O(N) devices

Need not be based on transistors
n Memristors, carbon nanotubes, DNA transcription, ...
n Possibly new models of computation
n But, still want lots of devices in an integrated system
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Moore’s Law: 100 Years

1017 devices!
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Visualizing 1017 Devices

0.1 m3

3.5 X 109 grains
1 million m3

0.35 X 1017 grains

If devices were the size of a 
grain of sand
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Increasing Transistor Counts

1. Chips have gotten bigger
n 1 area doubling / 10 years

2. Transistors have gotten smaller
n 4 density doublings / 10 years

Will these trends continue?
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Chips Have Gotten Bigger
Intel 4004

1970
2,300 transistors

12 mm2

Apple A12
6.9 B transistors

83 mm2

NVIDIA GV100 Volta
2017

21.1 B transistors
815 mm2
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Chip Size Trend

2x every 9.8 years
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Chip Size Extrapolation

147 cm2
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Extrapolation: The iPhone XXX
Apple A111

2065
1017 transistors

147 cm2
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Transistors Have Gotten Smaller

n Area A
n N devices
n Linear Scale L L = A / N

L
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1/2x every 5 years è
2x transistor density every 2.5 years



– 23 –

Decreasing Feature Sizes

Intel 4004
1970

2,300 transistors
L = 72,000 nm

Apple A12
2018

6.9 B transistors
L = 110 nm
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Submillimeter Dimensions

1 micrometer (μm)

10-3

10-4

10-5

10-6

5μm: Spider silk thickness

72μm: Intel 4004 linear scale
50μm: Average size of cell in human body

500μm: Length of amoeba

10μm: Thickness of sheet of plastic food wrap

2μm: E coli bacterium length

1 millimeter (mm)
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Submicrometer Dimensions

1 micrometer (μm)

1 nanometer (nm)

10-6

10-7

10-8

10-9 1nm: Carbon nanotube diameter

2nm: DNA helix diameter

9nm: Cell membrane thickness

110nm: Apple A12 linear scale

30nm: Minimum cooking oil smoke particle diameter

400-700nm: Visible light wavelengths
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Linear Scaling Extrapolation
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Subnanometer Dimensions

1 nanometer (nm)

1 picometer (pm)

10-9

10-10

10-11

10-12

2.4pm: Electron wavelength (Compton wavelength)

53pm: Electron-proton spacing in hydrogen (Bohr radius)

1nm: Carbon nanotube diameter
543pm: Silicon crystal lattice spacing

74pm: Spacing between atoms in hydrogen molecule

243pm: 2065 linear scale projection
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Reaching 2065 Goal

Target
n 1017 devices
n 400 mm2

n L = 63 pm

Is this possible? Not with 2-d
fabrication
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Fabricating in 3 Dimensions

Parameters
n 1017 devices
n 100,000 logical layers

l Each 50 nm thick
l ~1,000,000 physical layers

» To provide wiring and isolation

n L = 20 nm
l 10x smaller than today 2065 mm3

20 mm

20 mm5 mm

2000 mm3
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3D Fabrication Challenges

Yield
n How to avoid or tolerate flaws

Cost
n High cost of lithography

Power
n Keep power consumption within acceptable limits
n Limited energy available
n Limited ability to dissipate heat
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Photolithography

n Pattern entire chip in one step
n Modern chips require ~60 lithography steps
n Fabricate N transistor system with O(1) steps
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Fabrication Costs

Stepper
n Most expensive equipment in fabrication facility
n Rate limiting process step

l 18s / wafer
n Expose 858 mm2 per step

l 1.2% of chip area
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Fabrication Economics

Currently
n Fixed number of lithography steps
n Manufacturing cost $10–$20 / chip

l Including amortization of facility

Fabricating 1,000,000 physical layers
n Cannot do lithography on every step

Options
n Chemical self assembly

l Devices generate themselves via chemical processes
n Pattern multiple layers at once
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Samsung V-Nand Flash Example

n Build up layers of unpatterned material
n Then use lithography to slice, drill, etch, and deposit 

material across all layers
n ~30 total masking steps
n 64 layers of memory cells (soon to be 96)
n Exploits particular structure of flash memory circuits
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Meeting Power Constraints

n 6.9 B transistors
n 2.5 GHz operation
n 1—5 W

n 64 B neurons
n 100 Hz operation
n 15—25 W

l Liquid cooling
l Up to 25% body’s total 

energy consumption

Can we increase number of 
devices by 10,000,000x without 
increasing power 
requirement?
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Challenges to Moore’s Law: 
Economic Growing Capital Costs

n State of art fab line ~$20B
n Must have very high volumes to 

amortize investment
n Has led to major consolidations
n 2018: Global Foundaries won’t 

attempt 7nm fabrication
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Dennard Scaling
§ Due to Robert Dennard, IBM, 1974
§ Quantifies benefits of Moore’s Law

¢ How to shrink an IC Process
§ Reduce horizontal and vertical dimensions by k
§ Reduce voltage by k

¢ Outcomes
§ Devices / chip increase by k2

§ Clock frequency increases by k
§ Power / chip constant

¢ Significance
§ Increased capacity and performance
§ No increase in power
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End of Dennard Scaling

¢ What Happened?
§ Can’t drop voltage below ~1V
§ Reached limit of power / chip in 2004
§ More logic on chip (Moore’s Law), but can’t make them run faster

§ Response has been to increase cores / chip
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Some Thoughts about Technology
¢ Compared to future, past 50 years will seem fairly 

straightforward
§ 50 years of using photolithography to pattern transistors on two-

dimensional surface

¢ Questions about future integrated systems
§ Can we build them?
§ What will be the technology?
§ Are they commercially viable?
§ Can we keep power consumption low?
§ What will we do with them?
§ How will we program / customize them?
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HIGH-PERFORMANCE COMPUTING
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Comparing Two Large-Scale Systems

¢ Oakridge Summit

§ Monolithic 
supercomputer (fastest 
in world)

§ Designed for compute-
intensive applications

¢ Google Data Center

§ Servers to support 
millions of customers

§ Designed for data 
collection, storage, and 
analysis
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Computing Landscape

Computational Intensity

Personal
Computing

Cloud
Services

Da
ta

 In
te
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ity

Modeling &
Simulation-Driven

Science &
Engineering

Traditional Supercomputing

• Web search
• Mapping / directions
• Language translation
• Video streaming

Google Data Center

Internet-Scale
Computing

Oakridge
Summit
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Supercomputing Landscape
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Traditional Supercomputer Applications

¢ Simulation-Based Modeling
§ System structure + initial conditions + transition behavior
§ Discretize time and space
§ Run simulation to see what happens

¢ Requirements
§ Model accurately reflects actual system
§ Simulation faithfully captures model

Science Industrial 
Products

Public Health
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Summit Hardware

¢ Each Node
§ 2 IBM 22-core POWER9 processors
§ 6 nVidia Graphics Processing Units
§ 608 GB DRAM
§ 1600 GB Flash

¢ Overall
§ 13MW water cooled
§ $325 M for two machines

Local Network

Node 1 Node 2 Node 4,608

• • •
CPU

GP
U

GP
U

GP
U

CPU

GP
U

GP
U

GP
U

CPU

GP
U

GP
U

GP
U

CPU

GP
U

GP
U

GP
U

CPU

GP
U

GP
U

GP
U

CPU

GP
U

GP
U

GP
U



Carnegie Mellon

47Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summit Node Structure
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Summit Node Structure: CPU

¢ CPU
§ 22 cores sharing common memory
§ Supports multithreaded programming
§ Connects to three GPUs
§ Connects to interconnection network

DRAM
Memory

GPU

GPU

GPU

Interconnection
Network
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Summit Node Structure: GPU

¢ Tesla V100 GPU
§ 80 streaming multiprocessors (SMs)
§ Each with multiple execution units: 64 double-precision, 32 single-

precision, 32 integer
§ Single-Instruction, Multiple-Data parallelism

§ Single instruction controls all processors in group

§ 7 x 1012 FLOPS peak performance
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Supercomputer Programming: Principle

¢ Solving Problem Over Grid
§ E.g., finite-element system
§ Simulate operation over time

¢ Bulk Synchronous Model
§ Partition into Regions

§ p regions for p-node machine

§ Map Region per Processor
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Supercomputer Programming: (cont)

¢ Bulk Synchronous Model
§ Map Region per Processor
§ Alternate

§ All nodes compute behavior of 
region

– Perform on GPUs
§ All nodes communicate values at 

boundaries

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute
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Bulk Synchronous Performance

§ Limited by performance of 
slowest processor

¢ Strive to keep perfectly 
balanced
§ Engineer hardware to be highly 

reliable
§ Tune software to make as regular 

as possible
§ Eliminate “noise”

§ Operating system events
§ Extraneous network activity

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute
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Summit Programming: Reality
¢ System Level

§ Message-Passing Interface (MPI) supports node 
computation, synchronization and communication

¢ Node Level
§ OpenMP supports thread-level operation of node CPU
§ CUDA programming environment for GPUs

§ Performance degrades quickly if don’t have perfect balance 
among memories and processors

¢ Result
§ Single program is complex combination of multiple 

programming paradigms
§ Tend to optimize for specific hardware configuration
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My GPU Experience
¢ Multiply two 1024 x 1024 matrices (MM)

§ 2 X 109 floating point operations
§ Express performance in Giga FLOPS
§ Program in CUDA and map onto nVidia GPU
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Matrix Multiplication Progress
¢ Versions

§ Naive 1
§ Simple parallel 11
§ Blocking 70
§ nVidia Example Code 388
§ Reorient memory accesses 382
§ Packed data access 777

¢ Observations
§ Progress is very nonlinear

§ Not even monotonic
§ Requires increased understanding of how program maps onto 

hardware
§ Becomes more specialized to specific hardware configuration
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Supercomputer Programming Model

§ Program on top of bare hardware

¢ Performance
§ Low-level programming to 

maximize node performance
§ Keep everything globally 

synchronized and balanced

¢ Reliability
§ Single failure causes major delay
§ Engineer hardware to minimize 

failures

Hardware

Machine-Dependent
Programming Model

Software
Packages

Application
Programs
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Data-Intensive 
Computing Landscape

Computational Intensity

Personal
Computing

Cloud
Services

Da
ta
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• Web search
• Mapping / directions
• Language translation
• Video streaming

Google Data Center

Internet-Scale
Computing
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Internet Computing

¢ Web Search
§ Aggregate text data from 

across WWW
§ No definition of correct 

operation
§ Do not need real-time 

updating
¢ Mapping Services

§ Huge amount of (relatively) 
static data

§ Each customer requires 
individualized computation

¢ Online Documents
§ Must be stored reliably
§ Must support real-time 

updating
§ (Relatively) small data 

volumes
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Other Data-Intensive Computing Applications

¢ Wal-Mart
§ 267 million items/day, sold at 6,000 stores
§ HP built them 4 PB data warehouse
§ Mine data to manage supply chain, understand 

market trends, formulate pricing strategies

¢ LSST
§ Chilean telescope will scan entire sky every 3 days
§ A 3.2 gigapixel digital camera
§ Generate 30 TB/day of image data
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Data-Intensive Application Characteristics

¢ Diverse Classes of Data
§ Structured & unstructured
§ High & low integrity requirements

¢ Diverse Computing Needs
§ Localized & global processing
§ Numerical & non-numerical
§ Real-time & batch processing
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Google Data Centers

¢Dalles, Oregon
§ Hydroelectric power @ 2¢ / KW Hr
§ 50 Megawatts
§ Enough to power 60,000 homes

§ Engineered for low cost, 
modularity & power efficiency

§ Container: 1160 server nodes, 
250KW
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Google Cluster

§ Typically 1,000−2,000 nodes

¢ Node Contains
§ 2 multicore CPUs
§ 2 disk drives (or Flash)
§ DRAM

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

• • •
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Hadoop Project
¢ File system with files distributed across nodes

§ Store multiple (typically 3 copies of each file)
§ If one node fails, data still available

§ Logically, any node has access to any file
§ May need to fetch across network

¢ Map / Reduce programming environment
§ Software manages execution of tasks on nodes

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

• • •
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Map/Reduce Programming Model

n Map computation across many objects
l E.g., 1010 Internet web pages

n Aggregate results in many different ways
n System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1 kr

• • •

• • •

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data 
Processing on Large Clusters”, OSDI 2004
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Cluster Programming Model

§ Application programs written in 
terms of high-level operations on 
data

§ Runtime system controls 
scheduling, load balancing, …

¢ Scaling Challenges
§ Centralized scheduler forms 

bottleneck
§ Copying to/from disk very costly
§ Hard to limit data movement

§ Significant performance factor

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs
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Recent Programming Systems

¢ Spark Project

§ at U.C., Berkeley
§ Grown to have large open source community

¢ GraphLab
§ Started as project at CMU by Carlos Guestrin
§ Environment for describing machine-learning algorithms

§ Sparse matrix structure described by graph
§ Computation based on updating of node values
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6
8

Combining Simulation with Real Data

¢ Limitations
§ Simulation alone: Hard to know if model is correct

§ Data alone: Hard to understand causality & “what if”

¢ Combination
§ Check and adjust model during simulation
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Real-Time Analytics

¢ Millenium XXL Simulation (2010)
§ 3 X 109 particles
§ Simulation run of 9.3 days on 

12,228 cores
§ 700TB total data generated

§ Save at only 4 time points
§ 70 TB

§ Large-scale simulations generate 
large data sets

¢ What If?
§ Could perform data analysis while 

simulation is running Simulation
Engine

Analytic
Engine
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Example Analytic Applications

ClassifierImage Description

Microsoft Project Adam

TransducerEnglish
Text

German
Text
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Data Analysis with Deep Neural 
Networks
Task:

n Compute classification of 
set of input signals

Training
n Use many training samples of form input / desired output
n Compute weights that minimize classification error

Operation
n Propagate signals from input to output
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DNN Application Example
¢ Facebook DeepFace Architecture
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Training DNNs

Characteristics
n Iterative numerical 

algorithm
n Regular data 

organization

Project Adam Training
n 2B connections
n 15M images
n 62 machines
n 10 days
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Trends
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Challenges for Convergence
Supercomputers

n Customized
n Optimized for reliability

n Source of “noise”
n Static scheduling

n Low-level, processor-
centric model

Data Center Clusters

n Consumer grade
n Optimized for low cost

n Provides reliability
n Dynamic allocation

n High level, data-centric 
model

Hardware

Run-Time System

Application Programming
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Summary: Computation/Data Convergence

¢ Two Important Classes of Large-Scale Computing
§ Computationally intensive supercomputing
§ Data intensive processing

§ Internet companies + many other applications

¢ Followed Different Evolutionary Paths
§ Supercomputers: Get maximum performance from available hardware
§ Data center clusters: Maximize cost/performance over variety of data-

centric tasks
§ Yielded different approaches to hardware, runtime systems, and application 

programming

¢ A Convergence Would Have Important Benefits
§ Computational and data-intensive applications
§ But, not clear how to do it
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Overall Summary
¢ Consumer products and supercomputers share 

technology
§ CMOS integrated circuits
§ Flash memory

¢ Both are power limited
§ Heat / cooling
§ Battery life or utilities

¢ Until recently, technology followed predictable trends
¢ But, these are harder to sustain

§ Both technology and cost


