

Thread-Level Parallelism

15-213 / 18-213 / 14-513 / 15-513: Introduction to Computer Systems 26th Lecture, November 27, 2018

Today

Parallel Computing Hardware

- Multicore
 - Multiple separate processors on single chip
- Hyperthreading
 - Efficient execution of multiple threads on single core

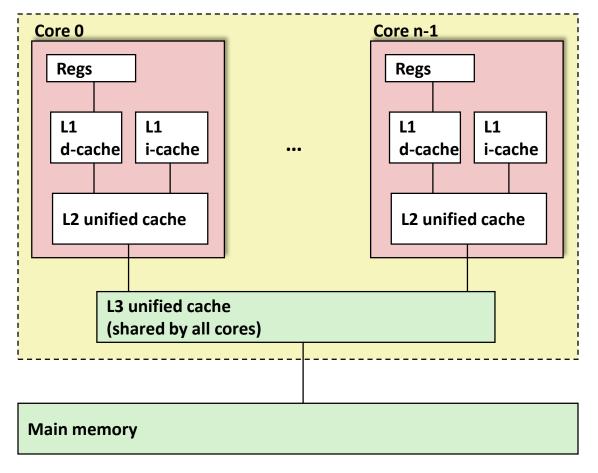
Consistency Models

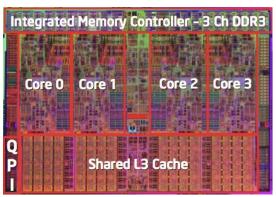
What happens when multiple threads are reading & writing shared state

Thread-Level Parallelism

- Splitting program into independent tasks
 - Example: Parallel summation
 - Examine some performance artifacts
- Divide-and conquer parallelism
 - Example: Parallel quicksort

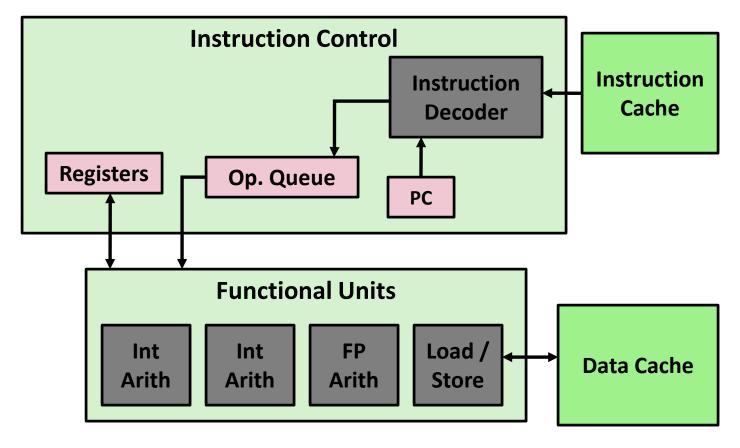
Typical Multicore Processor





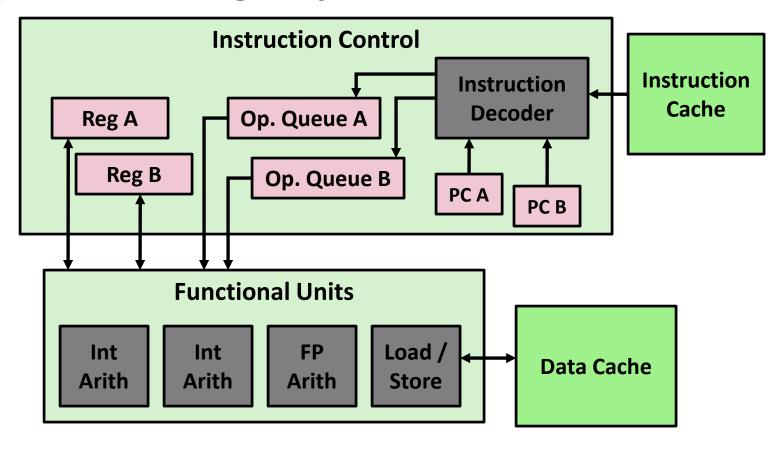
Multiple processors operating with coherent view of memory

Out-of-Order Processor Structure



- Instruction control dynamically converts program into stream of operations
- Operations mapped onto functional units to execute in parallel

Hyperthreading Implementation



- Replicate instruction control to process K instruction streams
- K copies of all registers
- Share functional units

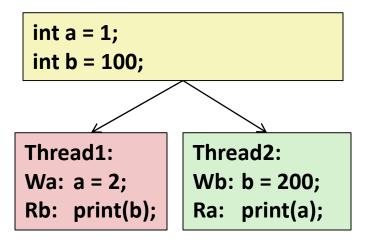
Benchmark Machine

- Get data about machine from /proc/cpuinfo
- Shark Machines
 - Intel Xeon E5520 @ 2.27 GHz
 - Nehalem, ca. 2010
 - 8 Cores
 - Each can do 2x hyperthreading

Exploiting parallel execution

- So far, we've used threads to deal with I/O delays
 - e.g., one thread per client to prevent one from delaying another
- Multi-core CPUs offer another opportunity
 - Spread work over threads executing in parallel on N cores
 - Happens automatically, if many independent tasks
 - e.g., running many applications or serving many clients
 - Can also write code to make one big task go faster
 - by organizing it as multiple parallel sub-tasks
- Shark machines can execute 16 threads at once
 - 8 cores, each with 2-way hyperthreading
 - Theoretical speedup of 16X
 - never achieved in our benchmarks

Memory Consistency

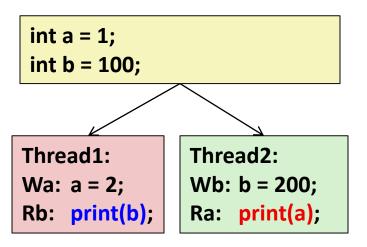


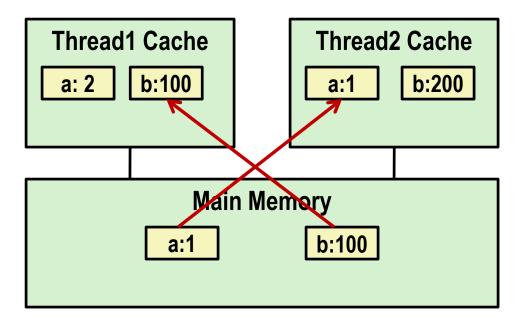
What are the possible values printed?

- Depends on memory consistency model
- Abstract model of how hardware handles concurrent accesses

Non-Coherent Cache Scenario

Write-back caches, without coordination between them



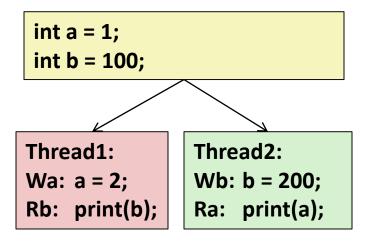


print 1

print 100

At later points, a:2 and b:200 are written back to main memory

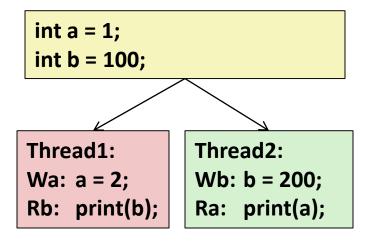
Memory Consistency



Thread consistency constraints
Wa → Rb
Wb → Ra

- What are the possible values printed?
 - Depends on memory consistency model
 - Abstract model of how hardware handles concurrent accesses

Memory Consistency



Thread consistency constraints
Wa → Rb
Wb → Ra

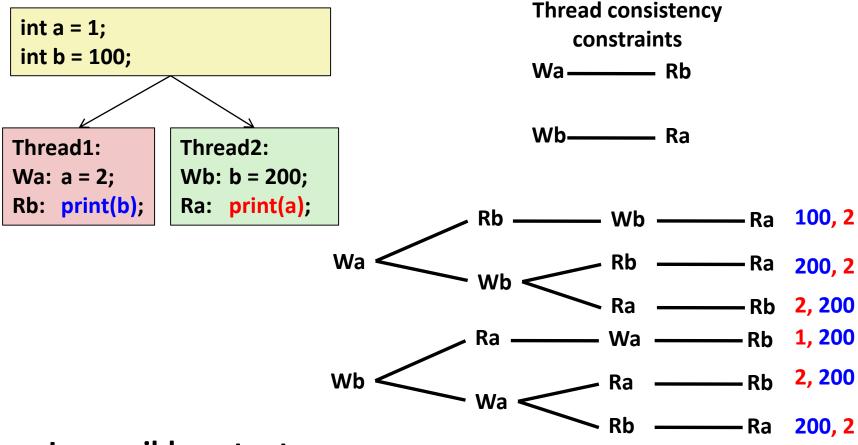
What are the possible values printed?

- Depends on memory consistency model
- Abstract model of how hardware handles concurrent accesses

Sequential consistency

- As if only one operation at a time, in an order consistent with the order of operations within each thread
- Thus, overall effect consistent with each individual thread but otherwise allows an arbitrary interleaving

Sequential Consistency Example

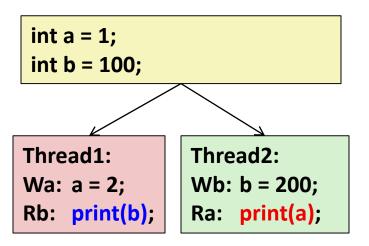


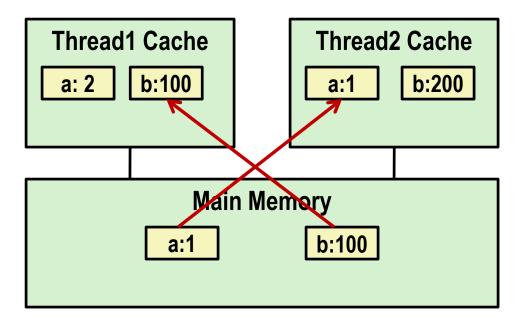
Impossible outputs

- 100, 1 and 1, 100
- Would require reaching both Ra and Rb before Wa and Wb

Non-Coherent Cache Scenario

Write-back caches, without coordination between them





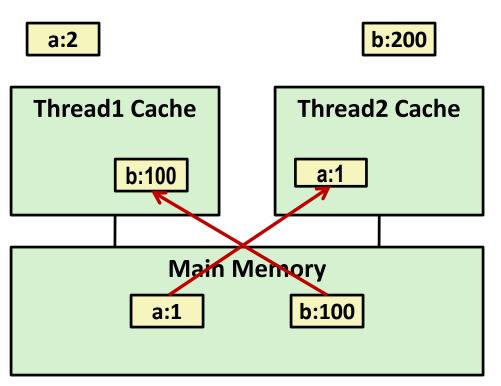
print 1

print 100

Sequentially consistent? No

Non-Sequentially Consistent Scenario

 Coherent caches, but thread consistency constraints violated due to out-of-order execution



```
int a = 1;
 int b = 100;
Thread1:
                 Thread2:
Wa: a = 2;
                 Wb: b = 200;
                 Ra: print(a);
Rb: print(b);
    print 1
    print 100
```

Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra

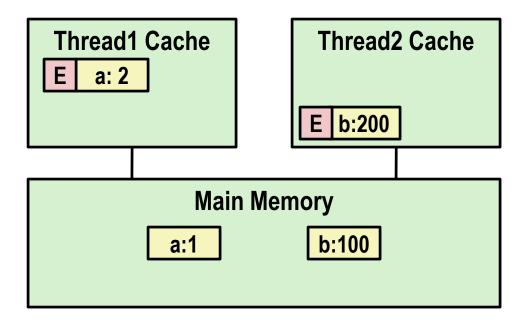
Snoopy Caches

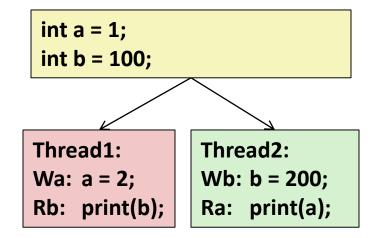
Tag each cache block with state

Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy





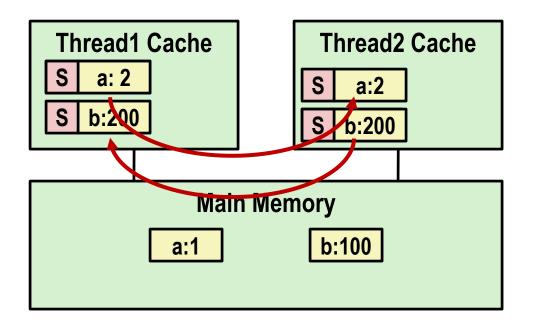
Snoopy Caches

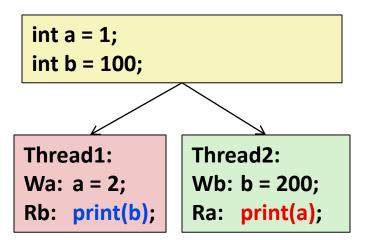
Tag each cache block with state

Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy





print 2

print 200

- When cache sees request for one of its E-tagged blocks
 - Supply value from cache (Note: value in memory may be stale)
 - Set tag to S

Memory Models

- Sequentially Consistent:
 - Each thread executes in proper order, any interleaving
- To ensure, requires
 - Proper cache/memory behavior
 - Proper intra-thread ordering constraints

Today

Parallel Computing Hardware

- Multicore
 - Multiple separate processors on single chip
- Hyperthreading
 - Efficient execution of multiple threads on single core

Consistency Models

What happens when multiple threads are reading & writing shared state

Thread-Level Parallelism

- Splitting program into independent tasks
 - Example: Parallel summation
 - Examine some performance artifacts
- Divide-and conquer parallelism
 - Example: Parallel quicksort

Summation Example

- Sum numbers 0, ..., N-1
 - Should add up to (N-1)*N/2
- Partition into K ranges
 - LN/K values each
 - Each of the t threads processes 1 range
 - Accumulate leftover values serially
- Method #1: All threads update single global variable
 - 1A: No synchronization
 - 1B: Synchronize with pthread semaphore
 - 1C: Synchronize with pthread mutex
 - "Binary" semaphore. Only values 0 & 1

Accumulating in Single Global Variable: Declarations

```
typedef unsigned long data t;
/* Single accumulator */
volatile data_t global_sum;
```

Accumulating in Single Global Variable: Declarations

```
typedef unsigned long data t;
/* Single accumulator */
volatile data t global sum;
/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;
```

Accumulating in Single Global Variable: Declarations

```
typedef unsigned long data t;
/* Single accumulator */
volatile data t global sum;
/* Mutex & semaphore for global sum */
sem t semaphore;
pthread mutex t mutex;
/* Number of elements summed by each thread */
size t nelems per thread;
/* Keep track of thread IDs */
pthread t tid[MAXTHREADS];
/* Identify each thread */
int myid[MAXTHREADS];
```

Accumulating in Single Global Variable: Operation

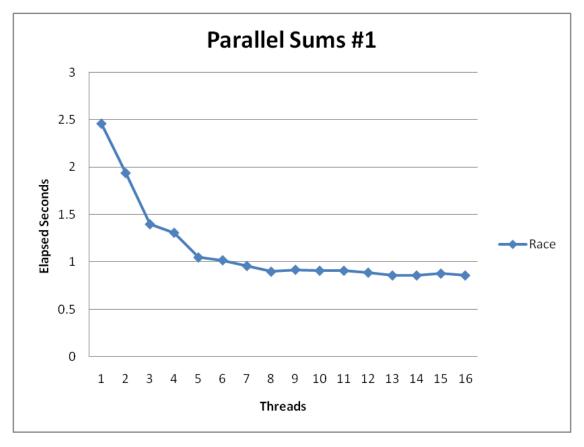
```
nelems per thread = nelems / nthreads;
/* Set global value */
                                                     Thread routine
global sum = 0;
                                      Thread ID
/* Create threads and wait for them to finish */
for (i = 0; i < nthreads; 1++) {</pre>
   myid[i] = i;
   Pthread create(&tid[i], NULL, thread fun, &myid[i]);
for (i = 0; i < nthreads; i++)</pre>
                                                   Thread arguments
   Pthread join(tid[i], NULL);
                                                       (void *p)
result = global sum;
/* Add leftover elements */
for (e = nthreads * nelems per thread; e < nelems; e++)</pre>
    result += e;
```

Thread Function: No Synchronization

```
void *sum_race(void *vargp)
{
    int myid = *((int *)vargp);
    size_t start = myid * nelems_per_thread;
    size_t end = start + nelems_per_thread;
    size_t i;

for (i = start; i < end; i++) {
        global_sum += i;
    }
    return NULL;
}</pre>
```

Unsynchronized Performance



- $N = 2^{30}$
- Best speedup = 2.86X
- Gets wrong answer when > 1 thread! Why?

Thread Function: Semaphore / Mutex

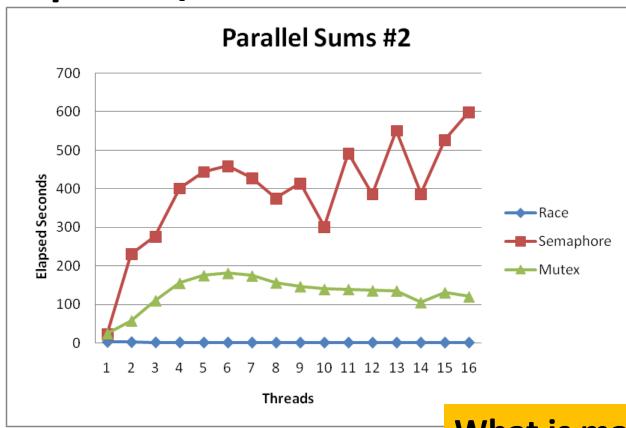
Semaphore

```
void *sum sem(void *varqp)
{
    int myid = *((int *)varqp);
    size t start = myid * nelems per thread;
    size t end = start + nelems per thread;
    size t i;
    for (i = start; i < end; i++) {
       sem wait(&semaphore);
       global sum += i;
       sem post(&semaphore);
    return NULL;
```

Mutex

```
pthread_mutex_lock(&mutex);
global_sum += i;
pthread_mutex_unlock(&mutex);
```

Semaphore / Mutex Performance



- Terrible Performance
 - 2.5 seconds → ~10 minutes
- Mutex 3X faster than semaphore
- Clearly, neither is successful

What is main reason for poor performance?

Separate Accumulation

- Method #2: Each thread accumulates into separate variable
 - 2A: Accumulate in contiguous array elements
 - 2B: Accumulate in spaced-apart array elements
 - 2C: Accumulate in registers

```
/* Partial sum computed by each thread */
data_t psum[MAXTHREADS*MAXSPACING];

/* Spacing between accumulators */
size_t spacing = 1;
```

Separate Accumulation: Operation

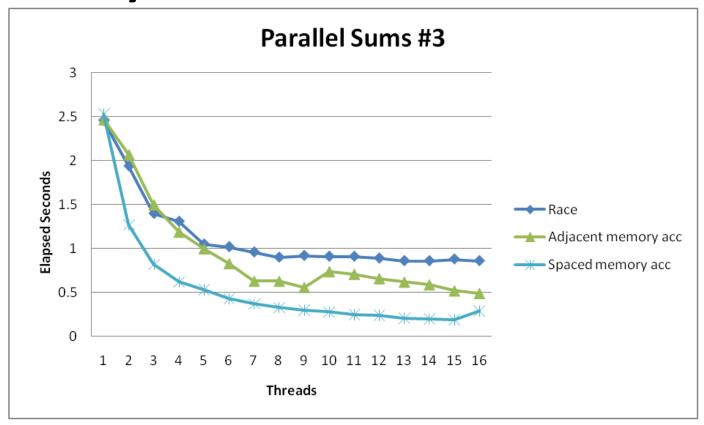
```
nelems per thread = nelems / nthreads;
/* Create threads and wait for them to finish */
for (i = 0; i < nthreads; i++) {</pre>
   myid[i] = i;
   psum[i*spacing] = 0;
   Pthread create(&tid[i], NULL, thread fun, &myid[i]);
for (i = 0; i < nthreads; i++)
   Pthread join(tid[i], NULL);
result = 0;
/* Add up the partial sums computed by each thread */
for (i = 0; i < nthreads; i++)</pre>
   result += psum[i*spacing];
/* Add leftover elements */
for (e = nthreads * nelems per thread; e < nelems; e++)</pre>
    result += e;
```

Thread Function: Memory Accumulation

Where is the mutex?

```
void *sum global(void *vargp)
{
    int myid = *((int *)varqp);
    size t start = myid * nelems per thread;
    size t end = start + nelems per thread;
    size t i;
    size t index = myid*spacing;
    psum[index] = 0;
    for (i = start; i < end; i++) {</pre>
       psum[index] += i;
    return NULL;
```

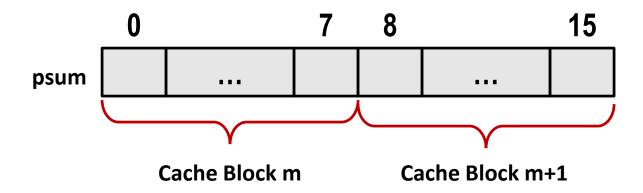
Memory Accumulation Performance



Clear threading advantage

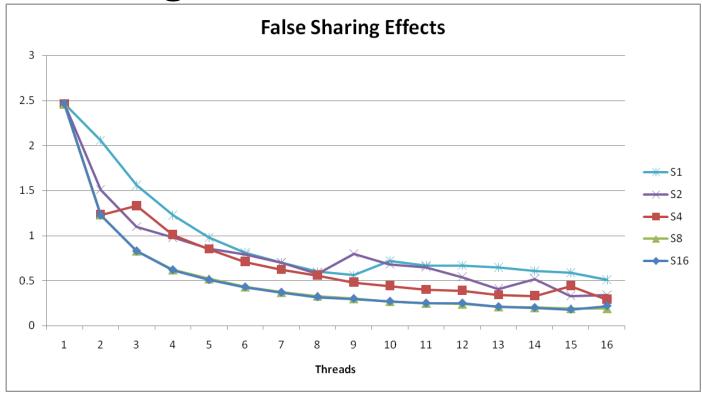
- Adjacent speedup: 5 X
- Spaced-apart speedup: 13.3 X (Only observed speedup > 8)
- Why does spacing the accumulators apart matter?

False Sharing



- Coherency maintained on cache blocks
- To update psum[i], thread i must have exclusive access
 - Threads sharing common cache block will keep fighting each other for access to block

False Sharing Performance

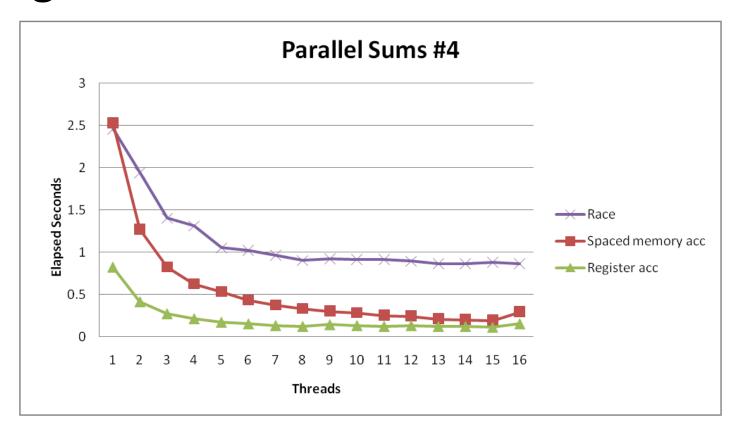


- Best spaced-apart performance 2.8 X better than best adjacent
- Demonstrates cache block size = 64
 - 8-byte values
 - No benefit increasing spacing beyond 8

Thread Function: Register Accumulation

```
void *sum local(void *vargp)
{
    int myid = *((int *)vargp);
    size t start = myid * nelems per thread;
    size t end = start + nelems per thread;
    size t i;
    size t index = myid*spacing;
    data t sum = 0;
    for (i = start; i < end; i++) {</pre>
       sum += i;
    psum[index] = sum;
    return NULL;
```

Register Accumulation Performance



- Clear threading advantage
 - Speedup = 7.5 X

Beware the speedup metric!

2X better than fastest memory accumulation

Lessons learned

- Sharing memory can be expensive
 - Pay attention to true sharing
 - Pay attention to false sharing
- Use registers whenever possible
 - (Remember cachelab)
 - Use local cache whenever possible
- Deal with leftovers
- When examining performance, compare to best possible sequential implementation

Quiz Time!

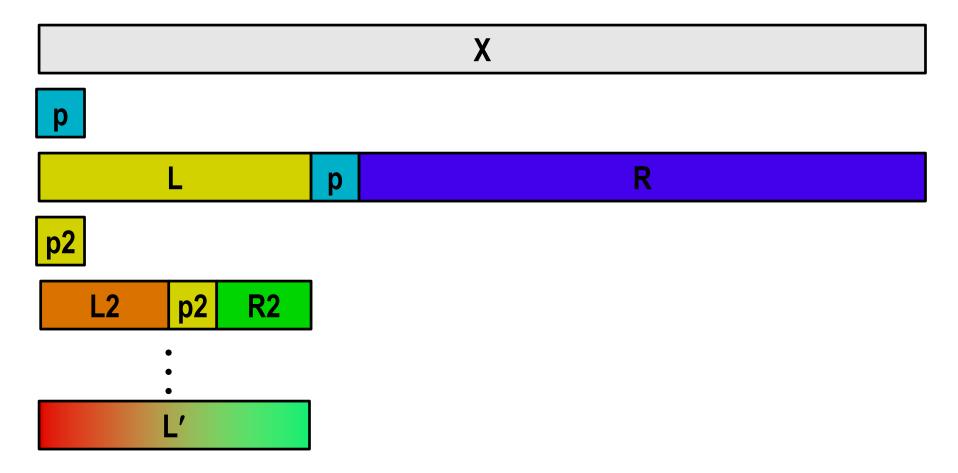
Check out:

https://canvas.cmu.edu/courses/5835

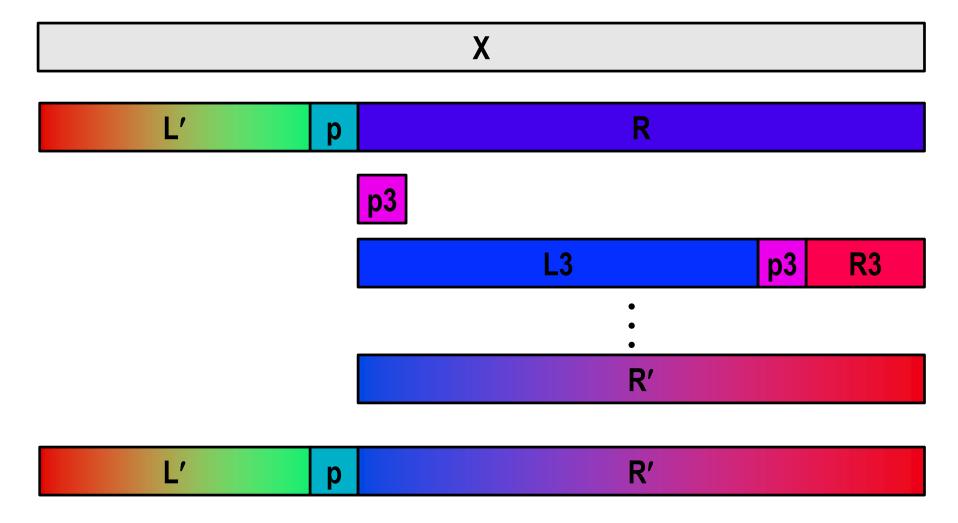
A More Substantial Example: Sort

- Sort set of N random numbers
- Multiple possible algorithms
 - Use parallel version of quicksort
- Sequential quicksort of set of values X
 - Choose "pivot" p from X
 - Rearrange X into
 - L: Values ≤ p
 - R: Values \geq p
 - Recursively sort L to get L'
 - Recursively sort R to get R'
 - Return L' : p : R'

Sequential Quicksort Visualized



Sequential Quicksort Visualized



Sequential Quicksort Code

```
void qsort serial(data t *base, size t nele) {
  if (nele <= 1)</pre>
    return:
  if (nele == 2) {
    if (base[0] > base[1])
      swap(base, base+1);
    return;
  }
  /* Partition returns index of pivot */
  size t m = partition(base, nele);
  if (m > 1)
   qsort serial(base, m);
  if (nele-1 > m+1)
    qsort serial(base+m+1, nele-m-1);
```

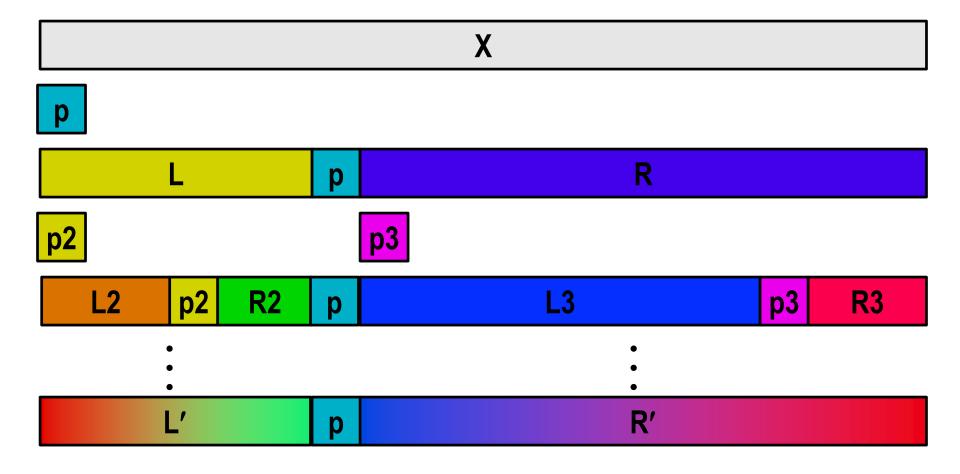
Sort nele elements starting at base

Recursively sort L or R if has more than one element

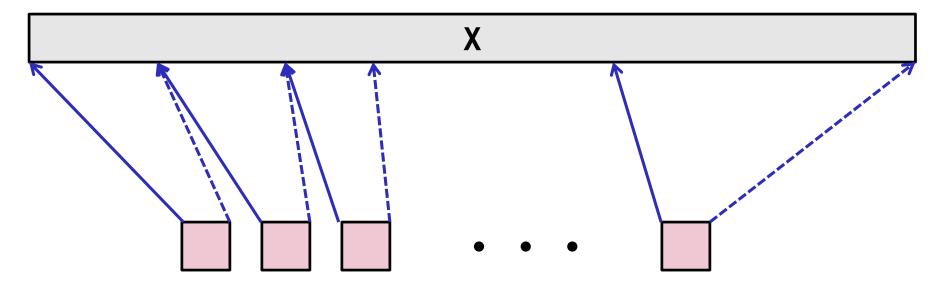
Parallel Quicksort

- Parallel quicksort of set of values X
 - If N ≤ Nthresh, do sequential quicksort
 - Else
 - Choose "pivot" p from X
 - Rearrange X into
 - L: Values \leq p
 - R: Values ≥ p
 - Recursively spawn separate threads
 - Sort L to get L'
 - Sort R to get R'
 - Return L' : p : R'

Parallel Quicksort Visualized



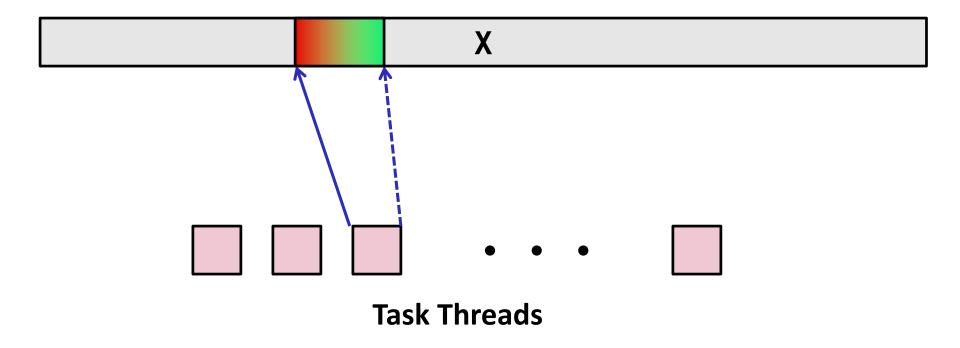
Thread Structure: Sorting Tasks



Task Threads

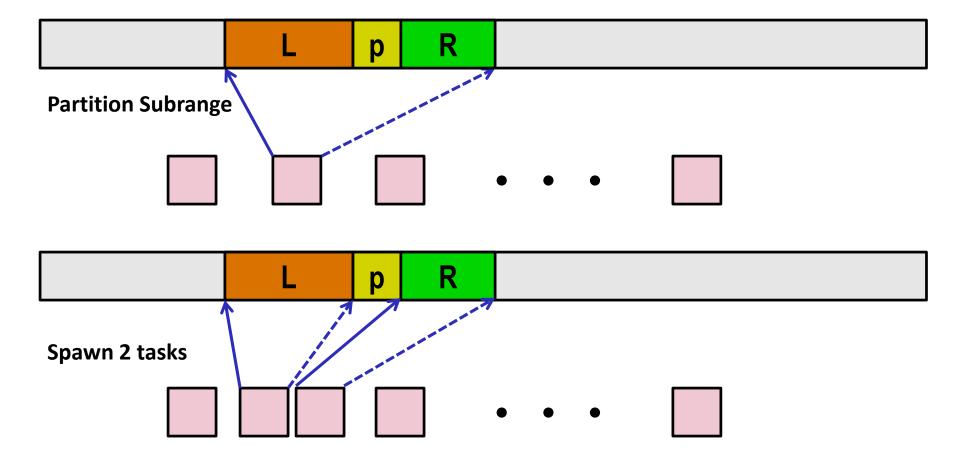
- Task: Sort subrange of data
 - Specify as:
 - base: Starting address
 - nele: Number of elements in subrange
- Run as separate thread

Small Sort Task Operation



Sort subrange using serial quicksort

Large Sort Task Operation



Top-Level Function (Simplified)

```
void tqsort(data_t *base, size_t nele) {
   init_task(nele);
   global_base = base;
   global_end = global_base + nele - 1;
   task_queue_ptr tq = new_task_queue();
   tqsort_helper(base, nele, tq);
   join_tasks(tq);
   free_task_queue(tq);
}
```

- Sets up data structures
- Calls recursive sort routine
- Keeps joining threads until none left
- Frees data structures

Recursive sort routine (Simplified)

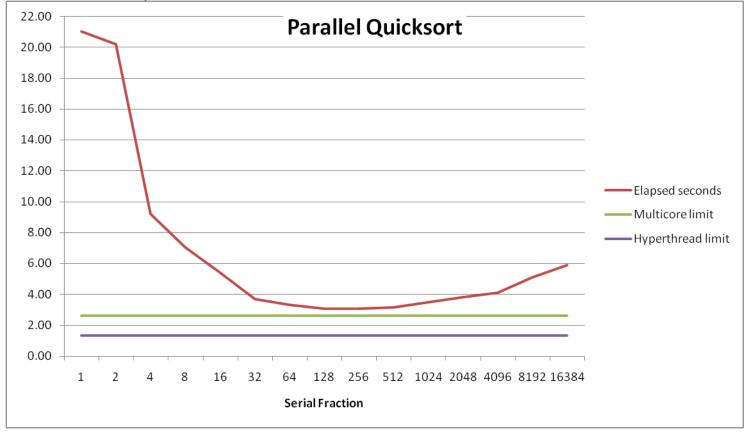
- Small partition: Sort serially
- Large partition: Spawn new sort task

Sort task thread (Simplified)

```
/* Thread routine for many-threaded quicksort */
static void *sort thread(void *vargp) {
    sort task t *t = (sort task t *) varqp;
    data t *base = t->base;
    size t nele = t->nele;
    task queue ptr tq = t->tq;
    free (varqp);
    size t m = partition(base, nele);
    if (m > 1)
        tqsort helper(base, m, tq);
    if (nele-1 > m+1)
        tqsort helper(base+m+1, nele-m-1, tq);
    return NULL;
```

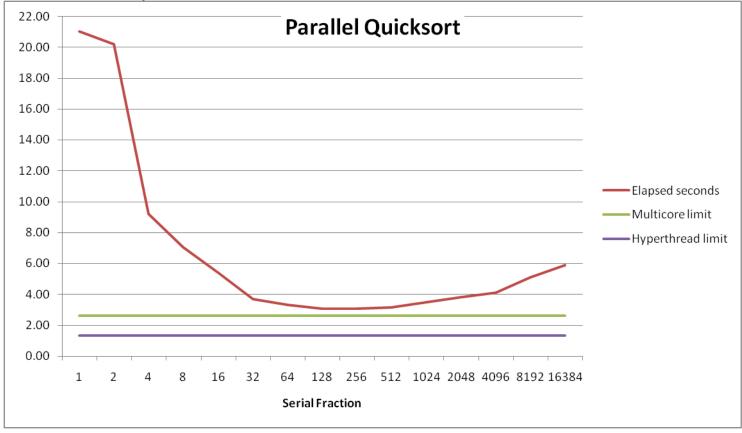
- Get task parameters
- Perform partitioning step
- Call recursive sort routine on each partition

Parallel Quicksort Performance



- Serial fraction: Fraction of input at which do serial sort
- Sort 2²⁷ (134,217,728) random values
- Best speedup = 6.84X

Parallel Quicksort Performance



Good performance over wide range of fraction values

- F too small: Not enough parallelism
- F too large: Thread overhead + run out of thread memory

Amdahl's Law

Overall problem

- T Total sequential time required
- p Fraction of total that can be sped up $(0 \le p \le 1)$
- k Speedup factor

Resulting Performance

- $T_k = pT/k + (1-p)T$
 - Portion which can be sped up runs k times faster
 - Portion which cannot be sped up stays the same
- Maximum possible speedup
 - $k = \infty$
 - $T_{\infty} = (1-p)T$

Amdahl's Law Example

Overall problem

- T = 10 Total time required
- p = 0.9 Fraction of total which can be sped up
- k = 9 Speedup factor

Resulting Performance

- $T_9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0$
- Maximum possible speedup
 - $T_{\infty} = 0.1 * 10.0 = 1.0$

Amdahl's Law & Parallel Quicksort

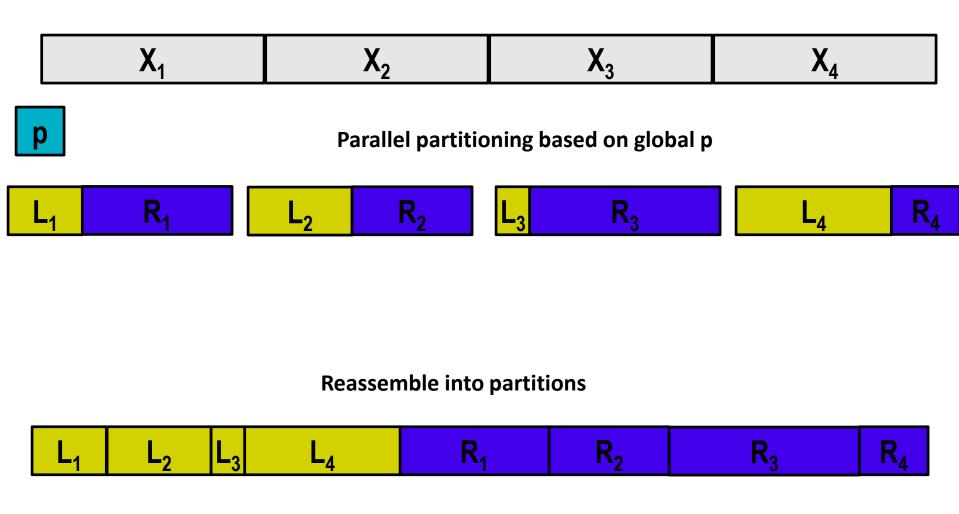
Sequential bottleneck

- Top-level partition: No speedup
- Second level: ≤ 2X speedup
- k^{th} level: $\leq 2^{k-1}X$ speedup

Implications

- Good performance for small-scale parallelism
- Would need to parallelize partitioning step to get large-scale parallelism
 - Parallel Sorting by Regular Sampling
 - H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 1992

Parallelizing Partitioning Step



Experience with Parallel Partitioning

- Could not obtain speedup
- Speculate: Too much data copying
 - Could not do everything within source array
 - Set up temporary space for reassembling partition

Lessons Learned

Must have parallelization strategy

- Partition into K independent parts
- Divide-and-conquer

Inner loops must be synchronization free

Synchronization operations very expensive

Watch out for hardware artifacts

- Need to understand processor & memory structure
- Sharing and false sharing of global data

Beware of Amdahl's Law

Serial code can become bottleneck

You can do it!

- Achieving modest levels of parallelism is not difficult
- Set up experimental framework and test multiple strategies