
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 11: More Malloc Lab 

Instructor: TA(s)



Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Understanding Your Code

 Sketch out the heap

 Add Instrumentation

 Use tools



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Start with a heap, in this case implicit list

 Now try something, in this case, extend_heap
block_t *block = payload_to_header(bp);

write_header(block, size, false);

write_footer(block, size, false);

// Create new epilogue header

block_t *block_next = find_next(block);    

write_header(block_next, 0, true);

4 4 4 4 6 46 40 00



Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sketch out the Heap

 Here is a free block based on lectures 19 and 20
 Explicit pointers (will be well-defined see writeup and Piazza)

 Optional boundary tags

 If you make changes to your design beyond this
 Draw it out.

 If you have bugs, 
pictures can help the staff help you

Size

Unallocated

b0

Size b0

1 word

Free
Block

Next

Prev



Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation

 Remember that measurements inform insights.
 Add temporary code to understand aspects of malloc

 Code can violate style rules or 128 byte limits, because it is 
temporary

 Particularly important to develop insights into 
performance before making changes
 What is expensive throughput-wise?

 How much might a change benefit utilization?



Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation example

 Searching in find_fit is often the slowest step

 How efficient is your code?  How might you know?
 Compute the ratio of blocks viewed to calls

static block_t *find_fit(size_t asize)

{

block_t *block;

for (block = heap_listp; get_size(block) > 0;

block = find_next(block))

{

if (!(get_alloc(block)) && (asize <= get_size(block)))

{

return block;

}

}

return NULL; // no fit found

}

call_count++;

block_count++;



Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Add Instrumentation cont.

 What size of requests?
 How many 8 bytes or less?

 How many 16 bytes or less?

 What other sizes?

 What else could you measure?  Why?

 Remember that although the system’s performance 
varies
 The mdriver’s traces are deterministic

 Measured results should not change between runs



Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Use tools

 Use mm_checkheap()
 Write it if you haven’t done so already

 Add new invariants when you add new features

 Know how to use the heap checker.

 Why do you need a heap checker? 2 reasons.

 Use gdb
 You can call print or mm_checkheap whenever you want in gdb. No 

need to add a while lot of printf’s.

 Offers useful information whenever you crash, like backtrace.



Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

mdriver-emulate

 Testing for 64-bit address space

 Use correctly sized masks, constants, and other variables

 Be careful about subtraction between size types (may re 
result in underflow/overflow)

 Reinitialize your pointers in mm_init



Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes

 Malloc library returns a block
 mdriver writes bytes into payload (using memcpy)

 mdriver will check that those bytes are still present

 If malloc library has overwritten any bytes, then report garbled bytes

 Also checks for other kinds of bugs

 Now what?

 The mm_checkheap call is catching it right?

 If not, we want to find the garbled address and watch it



Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Garbled Bytes and gdb

 Get out a laptop

 Login to shark machine

 wget http://www.cs.cmu.edu/~213/activities/rec11b.tar

 tar xf rec11b.tar

 mm.c is a fake explicit list implementation.
 Source code is based on mm_baseline.c

 A few lines of code are added that vaguely resembles what an 
explicit list implementation could have.

http://www.cs.cmu.edu/~213/activities/rec12.tar


Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Exercise

 gdb --args ./mdriver -c ./traces/syn-array-short.rep -D

(gdb) r

// Sample output follows

Throughput targets: min=6528, max=11750, benchmark=13056

Malloc size 9904 on address 0x800000010.

...

ERROR [trace ././traces/syn-array-short.rep, line 12]: 

block 0 has 8 garbled bytes, starting at byte 0

...

Terminated with 2 errors

[Inferior 1 (process 13470) exited normally]

(gdb)



Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Exercise cont.

 What is the first address that was garbled?
 Use gdb watch to find out when / what garbled it.

(gdb) watch * 0x800000010

(gdb) run

// Keep continuing through the breaks:

// mm_init()

// 4 x memcpy

Hardware watchpoint 1: *0x800000010

Old value = -7350814

New value = 0

mm_malloc (size=50084) at mm.c:272

We just broke in
after overwriting



Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Second Exercise

Well fine, the bug from the first exercise was very artificial. 
No one just sets bytes to 0 for no reason.

Try this more plausible exercise:

$ gdb --args ./mdriver-2 -c traces/syn-array-short.rep

What error was printed to the console?

The function that prints the error is named 
malloc_error. Add a breakpoint for it if you want.



Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Second Exercise

The library must’ve written the header and footer for the 
out-of-bounds payload at some point. Add a watchpoint for 
either address, or both.

…So, the writes occurred in place. Is the place function 
wrong, or was it just given a bad argument?

Hint: the bug is found in at basically the same place as last 
recitation’s bug.

It’s caused by a careless typo, like nearly all others bugs.



Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Tips for using our tools

 Run mdriver with the –D option to detect garbled bytes as 
early as possible. Run it with –V to find out which trace 
caused the error.

 Note that sometimes, you get the error within the first 
few allocations. If so, you could set a breakpoint for 
mm_malloc / mm_free and step though every line.

 Print out local variables and convince yourself that they 
have the right values.

 For mdriver-emulate, you can still read memory from the 
simulated 64-bit address space using 
mem_read(address, 8) instead of x /gx.



Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MallocLab

 Due Thursday

 7% of final grade (+ 4% for checkpoint)

 Read the writeup. It even has a list of tips on how to 
improve memory utilization.

 Rubber duck method
 If you explain to a rubber duck / TA what your function does step-

by-step, while occasionally stopping to explain why you need each 
of those steps, you’d may very well find the bug in the middle of 
your explanation.

 Remember the “debug thought process” slide from Recitation 10?


