
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 10: Malloc Lab

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

What’s malloc?

 A function to allocate memory during runtime
(dynamic memory allocation).
 More useful when the size or number of allocations is

unknown until runtime (e.g. data structures)

 There’s a segment of memory addresses reserved
almost exclusively for malloc to use.
 Your code directly manipulates the bytes of memory in

this section.

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Concept

 How to choose blocks

 Metadata

 Debugging / GDB Exercises

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Malloc Internals

 The heap consists of blocks of memory

(heap)

malloc’d malloc’d malloc’d

free malloc’d

free

free

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept

 Really, malloc only does three things:

1. Organize all blocks and store information about them in
a structured way.

2. Using the structure made in 1), choose an appropriate
location to allocate new memory.

3. Update the structure made in 1) when the user frees a
block of memory.

This process occurs even for a complicated algorithm like
segregated lists.

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

1. Organize all blocks and store information about them in
a structured way.

(heap)

m(3) m(5) m(4)

free (size = 8) malloc’d (size = 7)

f(3)

free (size = 25)

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

2. Using the structure made in 1), choose an appropriate
location to allocate new memory.

(heap)

m(3) m(5) m(4)

free (size = 8) malloc’d (size = 7)

f(3)

free (size = 25)

(heap)

m(3) m(5) m(4)

malloc’d (size = 8) malloc’d (size = 7)

f(3)

free (size = 25)

malloc(8)

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Concept (Implicit list)

3. Update the structure made in 1) when the user frees a
block of memory.

(heap)

m(3) m(5) m(4)

malloc’d (size = 8) malloc’d (size = 7)

f(3)

free (size = 25) free(that block)

(heap)

m(3) m(4)

malloc’d (size = 8) malloc’d (size = 7)

free (size = 8)

free (size = 25)

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Goals

 Run as fast as possible

 Waste as little memory as possible
 Seemingly conflicting goals, but with cleverness you can do very

well in both areas.

 The simplest implementation is the implicit list.
mm-baseline uses this method.
 Unfortunately…

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

In case you didn’t preview

 Allocation methods, in a nutshell

 Implicit list: A list is implicitly formed by jumping between
blocks, using knowledge about their sizes.

 Explicit list: Free blocks explicitly point to other blocks,
like in a linked list.
 Understanding explicit list requires understanding implicit list

 Segregated list: Multiple linked lists, each containing
blocks in a certain range of sizes.
 Understanding segregated lists requires understanding explicit list

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Choices

 What kind of implementation to use?

 Implicit list, explicit list, segregated lists, binary tree methods …etc

 Can use specialized strategies depending on the size of allocations

 Adaptive algorithms are fine, though not necessary to get 100%.

 But please, don’t directly test for which trace file is running.

 What fit algorithm to use?

 Best fit: choose the smallest block that is big enough to fit the requested
allocation size

 First fit / next fit: search linearly starting from some location, and pick the
first block that fits.

 Which one’s faster, and which one uses less memory?

 This lab has many more ways to get an A+ than, say, Cache lab part 2

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Finding a Best Block

 Suppose you have implemented the explicit list approach
 You were using best fit with explicit lists

 You experiment with using segregated lists instead.
Still using best fits.
 Will your memory utilization score improve?

Note: you don’t have to implement seglists and run mdriver to
answer this. That’s, uh, hard to do within one recitation session.

 What other advantages does segregated lists provide?

 Losing memory because of the way you choose your free
blocks is called external fragmentation.

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Metadata

 All blocks need to store some data about themselves in
order for malloc to keep track of them (e.g. headers)

 This takes memory too…

 Losing memory for this reason is called internal fragmentation.

 What data might a block need?
 Does it depend on the malloc implementation you use?

 Is it different between free and allocated blocks?

 Can we use the extra space in free blocks?
 Or do we have to leave the space alone?

 How can we overlap two different types of data at the
same location?

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Hey, your malloc worked! GJ.

Setting up the blocks, metadata, lists… etc (500 LoC)

+ Finding and allocating the right blocks (500 LoC)

+ Updating your heap structure when you free (500 LoC) =

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Nope. Have fun debugging your code!

Setting up the blocks, metadata, lists… etc (500 LoC)

+ Finding and allocating the right blocks (500 LoC)

+ Updating your heap structure when you free (500 LoC)

+ One bug, somewhere lost in those 1500 LoC =

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

GDB Practice

 Using GDB well in malloclab can save you HOURS* of
debugging time
 Average 20 hours using GDB for “B” on malloclab

 Average 23 hours not using GDB for “B” on malloclab

 Form pairs
 Login to a shark machine

 wget http://www.cs.cmu.edu/~213/activities/rec11.tar

 tar xf rec11.tar

 cd rec11

 make

 Two buggy mdrivers

*Average time is based on Summer 2016 survey results

http://www.cs.cmu.edu/~213/activities/rec11.tar

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

First things first

 Try running $ make
 If you look closely, our code compiles your malloc

implementation with the -O3 flag.

 This is an optimization flag. -O3 makes your code run as efficiently
as the compiler can manage, but also makes it horrible for
debugging (almost everything is “optimized out”).

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging mdriver

$ gdb --args ./mdriver -c traces/syn-mix-short.rep

(gdb) run

(gdb) backtrace

(gdb) list

Optional: Type Ctrl-X Ctrl-A to see the source code. Don’t
linger there for long, since this visual mode is buggy. Type
that key combination again to go back to console mode.

1) What function is listed on the top of backtrace?

2) What line of code crashed?

3) How did that line cause the crash?

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Debugging mdriver

 (gdb) x /10gx block

 Shows the memory contents within the block

 In particular, look for the header.

 Remember the output from (gdb) bt?

 (gdb) frame 1

 Jumps to the function one level down the call stack (aka the
function that called write_footer)

 Ctrl-X, Ctrl-A again if you want to see visuals

 What was the caller function? What is its purpose?
 Was it writing to block or block_next when it crashed?

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Thought process while debugging

 write_footer crashed because it got the wrong
address for the footer…

 The address was wrong because the header of the block
was some garbage value
 Since write_footer uses get_size(block) after all

 But why in the world does the header contain garbage??
 The crash happened in place, which basically splits a free block

into two and uses the first one to store things.

 Hm, block_next would be the new block created after the split?
The one on the right?

 The header would be in the middle of the original free block
actually. Wait, but I wrote a new header before I wrote the footer!

 Right? …Oh, I didn’t. Darn.

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Heap consistency checker

 mm-2.c activates debug mode, and so mm_checkheap
runs at the beginning and end of many of its functions.

 The next bug will be a total nightmare to find without this
heap consistency checker*.

*Even though the checker in mm-2.c is short and buggy

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Now you try debugging this

$ gdb --args ./mdriver-2 -c traces/syn-array-short.rep

mm_checkheap will fail. What reason does it cite?

Where’s the footer? Use x /gx and some arithmetic

Track changes in the header and the footer:

(gdb) watch *[header address]

(gdb) watch *[footer address]

When does the footer’s value turn inconsistent? What
function was running at the time? Which part of that
function was wrong? Use backtrace and frame.

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

MallocLab Checkpoint

 Due Thursday

 Checkpoint should take a bit less than half of the time

 Read the writeup. Slowly. Carefully.

 Use GDB

 Ask us for debugging help
 Only after you implement mm_checkheap though

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Advanced GDB Usage

 backtrace: Shows the call stack

 frame: Lets you go to one of the levels in the call stack

 list: Shows source code

 print <expression>:

 Runs any valid C command, even something with side effects like
mm_malloc(10) or mm_checkheap(1337)

 watch <expression>:

 Breaks when the value of the expression changes

 break <function / line> if <expression>:

 Only stops execution when the expression holds true

 Ctrl-X Ctrl-A for visualization

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Appendix: Building O0

 Edit the file named Makefile and make it use -O0

 Then run $ make –B
 Alternative: $ make clean $ make

 Just running make won’t work because it’ll say nothing new needs
to be compiled. So we force it to recompile.

 Remember to set it back to –O3 when you’re done to test
throughput, since -O0 makes your code much slower.

