
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 9: Tshlab + VM

Instructor: TAs

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Labs

 Signals

 IO

 Virtual Memory

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

TshLab and MallocLab

 TshLab due Tuesday

 MallocLab is released immediately after
 Start early

 Do the checkpoint first, don’t immediately go for the final

 Expect a recitation next week

 Working for several hours will improve the value significantly

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals

 Parent process sends SIGINT to a child process.
What is the behavior of the child?

 What is the default?

 What else could the child do?

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

More Signals

 Parent process sends SIGKILL to a child process.
What is the behavior of the child?

 What is the default?

 What else could the child do?

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sending Signals

 Parent sends SIGKILL to a child process.

...

pid_t pid = ...; // child pid

kill(pid, SIGKILL);

// At this point, what has happened

// to the child process?

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals

 How many times is Hi printed?

int main(int argc, char** argv)

{

pid_t ppid = getpid(), cpid, tpid;

cpid = fork();

if (cpid == 0) tpid = ppid;

else tpid = cpid;

kill(tpid, SIGINT);

write(STDOUT_FILENO, “Hi”, strlen(“Hi”));

return 0;

}

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Signals

 The shell is currently running its handler for SIGCHLD.

 What signals can it receive?

 What signals can it not receive (i.e., blocked)?

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Errno

 Included from <errno.h>

 Global integer variable – usually 0

 When a system call fails (usually indicated by returning -
1), it also will set errno to a value describing what went
wrong

 Example: let’s assume there is no “foo.txt” in our path
int fd = open(”foo.txt”, O_RDONLY);

if(fd < 0) printf(“%d\n”, errno);

 The code above will print 2 – in the man pages, we can
see that 2 is ENOENT “No such file or directory”

 In shell lab, your signal handlers must preserve errno

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IO functions

Needed for tshlab
 int open(const char *pathname, int flags);

 Some important flags:

 O_CREAT – creates file if needed, opens for read/write

 O_RDWR – opens for read/write

 O_RDONLY – opens for read only

 int close(int fd);

 int dup2(int oldfd, int newfd);

Needed for life
 ssize_t read(int fd, void *buf, size_t count);

 ssize_t write(int fd, const void *buf,

size_t count);

 off_t lseek(int fd, off_t offset, int whence);

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

IO and Fork()

 File descriptor management can be tricky.

 How many file descriptors are open in the parent process at the
indicated point?

 How many does each child have open at the call to execve?

int main(int argc, char** argv)

{

int i;

for (i = 0; i < 4; i++)

{

int fd = open(“foo”, O_RDONLY);

pid_t pid = fork();

if (pid == 0)

{

int ofd = open(“bar”, O_RDONLY);

execve(...);

}

}

// How many file descriptors are open in the parent?

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Redirecting IO

 File descriptors can be directed to identify different open
files.

int main(int argc, char** argv)

{

int i;

for (i = 0; i < 4; i++)

{

int fd = open(“foo”, O_RDONLY);

pid_t pid = fork();

if (pid == 0)

{

int ofd = open(“bar”, O_WRONLY);

dup2(fd, STDIN_FILENO);

dup2(ofd, STDOUT_FILENO);

execve(...);

}

}

// How many file descriptors are open in the parent?

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Redirecting IO

 At the two points (A and B) in main, how many file
descriptors are open?

int main(int argc, char** argv)

{

int i, fd;

fd = open(“foo”, O_WRONLY);

dup2(fd, STDOUT_FILENO);

// Point A

close(fd);

// Point B

...

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Access

 The processor tries to write to a memory address.

 List different steps that are required to complete this
operation.

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Memory Access

 The processor tries to write to a memory address.

 List different steps that are required to complete this
operation. (non exhaustive list)

 Virtual to physical address conversion (TLB lookup)

 TLB miss

 Page fault, page loaded from disk

 TLB updated, check permissions

 L1 Cache miss (and L2 … and)

 Request sent to memory

 Memory sends data to processor

 Cache updated

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Address Translation with TLB

 Translate 0x15213, given the contents of the TLB and the first 32
entries of the page table below.

 1MB Virtual Memory
256KB Physical Memory
4KB page size

Index Tag PPN Valid

0 05 13 1

3F 15 1

1 10 0F 1

0F 1E 0

2 1F 01 1

11 1F 0

3 03 2B 1

1D 23 0

VPN PPN Valid VPN PPN Valid

00 17 1 10 26 0

01 28 1 11 17 0

02 14 1 12 0E 1

03 0B 0 13 10 1

04 26 0 14 13 1

05 13 0 15 18 1

06 0F 1 16 31 1

07 10 1 17 12 0

08 1C 0 18 23 1

09 25 1 19 04 0

0A 31 0 1A 0C 1

0B 16 1 1B 2B 0

0C 01 0 1C 1E 0

0D 15 0 1D 3E 1

0E 0C 0 1E 27 1

0F 2B 1 1F 15 1

2-way

set

associative

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If you get stuck on TshLab

 Read the writeup!

 Do manual unit testing before runtrace and sdriver!

 Post private questions on piazza!

 Read the man pages on the syscalls.
 Especially the error conditions

 What errors should terminate the shell?

 What errors should be reported?

