15-213 Recitation: Attack Lab

TA
25 Sep 2017

Agenda

m Reminders
m Stacks
m Attack Lab Activities

Reminders

m Bomb lab is due tomorrow (14 Feb, 2017) !

m “But if you wait until the last minute, it only takes a minute!” — NOT!
m Don’t waste your grace days on this assignment!

m Attack lab will be released tomorrow!

Stacks

m Last-in, first-out

m X86 stack grows down
m lowest address is “top”
m $rsp contains the address of the topmost element in the stack

m Uses the pushq and popq instructions to push and
pop registers/constants onto and off the stack

arnegie vielion

Stack - pushq & popqg

m pushq {value} is equivalent
to

sub $8, %rsp
mov {value}, (%rsp)

rSp| Oxbeefbeef Oxbeefbeef | %rSP| Oxbeefbeef
m popq {reg} is equivalent to 0x15213

mov (%rsp), {reg} \ \ %rh

add $8, %rsp

%rbx =0 %rbx =0 %rbx = 0x15213

Stack — Caller vs. Callee

B Function A calls function B
m A s the caller
m B is the callee

m Stack space is allocated in “frames”
m Represents the state of a single function invocation

m Frame used primarily for two things:
m Storing callee saved registers
m Storing the return address of a funciton

Registers — Caller-saved vs. Callee-saved

m Caller-saved = Callee-saved
m Registers used for function = |f the function wants to change the
arguments are always caller- register, it must save the original
saved value in its stack frame and restore

it before returning
m $rax is also caller-saved

= The calling function may store

o Qar']'ed fu_”r‘]:t'r?” may do as it temporary values in callee-saved
wishes with the registers registers

m Must save/restore register in
caller’s stack frame if it still needs
the value after a function call

x86-64 Register Usage Conventions

%rax return value %r8 argument #5
%rbx callee saves %r9 argument #6
%rcx argument #4 %rio caller saves
%rdx argument #3 %ril caller saves
%rsi argument #2 %ri2 callee saves
%rdi argument #1 %ri3 callee saves
%rbp callee saves %ri1s callee saves

Registers — Caller-saved vs. Callee-saved

m Before function call m After function call
mrdi = first argument mrdi = garbage
mrsi = second argument mrsi = garbage
mrax = some temporary value mrax = return value
mrbx = some important number to mrbXx = some important number to
use later (15213) use later (15213)
mIsp = pointer to some important mIsp = pointer to some important

buffer (Ox7fffffffaaaa) buffer (Ox7fffffffaaaa)

x86-64/Linux Stack Frame f

m Current Stack Frame (“Top” to Bottom) caller J
m “Argument build:” Frame

. Arguments
- Parameters for function about to call 7+
m Local variables Frame pointer L |Return Addr
- If can’t keep in registers Srbo Old $xbp
m Saved register context (Optional)
old f inter (optional saved
m rame pointer (optional) Registers
I
Local
m Caller Stack Frame Variables
m Return address
Argument

- Pushed by call instruction

. : Build
m Arguments for this call Stack pointer

S r Sp——t (Optional)

Stack Maintenance

m Functions free their frame before returning

m Return instruction looks for the return address at the
top of the stack

m ...\lWhat if the return address has been changed?

Attack Lab

m We’re letting you hijack programs by running

buffer overflow attacks on them.
mls that not justification enough?

m To understand stack discipline and stack frames

m To defeat relatively secure programs with return
oriented programming

Attack Lab Activities

m Three activities
m Each relies on a specially crafted assembly sequence to purposefully
overwrite the stack

m Activity 1 - Overwrites the return addresses

m Activity 2 - Writes an assembly sequence onto the stack

m Activity 3 — Uses byte sequences in libc as the
instructions

Attack Lab Activities

m One student needs a laptop
m Login to a shark machine
$ wget http://lwww.cs.cmu.edu/~213/activities/rec5.tar
$ tar xf rec5.tar
$ cd rech
$ make
$ gdb act1

http://www.cs.cmu.edu/~213/activities/rec5.tar

Activity 1

(gdb) break clobber

(gdb) run

(gdb) x $rsp

(gdb) backtrace

Q. Does the value at the top of the stack match any frame?

Activity 1 Continued

(gdb) x /12gx $rdi // Here are the two key values

(gdb) stepi /| Keep doing this until
(gdb)
clobber () at support.s:16
16 ret

(gdb) x $rsp

Q. Has the return address changed?

(gdb) finish /Il Should exit and print out “Hi!”

Activity 1 Post

m Clobber overwrites part of the stack with memory at
$rdi, including the all-important return address

m In act1 it writes two new return addresses:
m 0x400500: address of printHi()
m 0x400560: address in main

Call clobber()

Clobber executes In printHi() In main()

OxT7fffffffe338 : 0x000000400560 ret: 0000000400560 ret
0x000000400553 0x000000400500

Activity 2
$gdb act2
(gdb) break clobber
(gdb) run
(gdb) x $rsp
Q. What is the address of the stack and the return address?

(gdb) x /4gx $rdi
Q. What will the new return address be?
(i.e., what is the first value?)

Activitity 2 Continued

(gdb) x/5i $rdi + 8 // Display as instructions
Q. Why rdi + 8?
Q. What are the three addresses?

(gdb) break puts
(gdb) break exit
Q. Do these addresses look familiar?

Activity 2 Post

m Normally programs cannot execute instructions on the

stack
m Main used mprotect to disable the memory protection for this activity

m Clobber wrote an address that’s on the stack as a

return address
m Followed by a sequence of instructions
m Three addresses show up in the exploit:
= 0x48644d - “Hi\n” string
= 0x4022e0 - puts() function
= 0x4011a0 - exit() function

Activity 3

$gdb act3

(gdb) break clobber

(gdb) run

(gdb) x /5gx $rdi

Q. Which value will be first on the stack?

Q. At the end of clobber, where will the function return to?

Activity 3 Continued

(gdb) x /2i <return address>

Q. What does this sequence do?

Q. Do the same for the other addresses. Note that some
are return addresses and some are for data. When you
continue, what will the code now do?

Activity 3 Post

m It’s harder to stop programs from running existing
pieces of code in the executable.

m Clobber wrote multiple return addresses (aka gadgets)
that each performed a small task, along with data that
will get popped off the stack while running the gadgets.

m0x457d0c: pop %rdi; retq

m0x47fa64: Pointer to the string “Hi\n”
m0x429a6a: pop %rax; retq

m0x400500: Address of a printing function
m0x47f001: callg *%rax

Activity 3 Post

m Note that some of the return addresses actually
cut off bytes from existing instructions
i S AT 0x457d0b ...0c ...0d

157 £ 5h nop
A3 8d 44 3d 08 ea

5d

pop %r15 retq
41 5f c3

pop %rdi retq
5f c3

$0x0, 0x10 (%rsp)

Operation Register R
frax | ¥rcx | %rdx | %rbx | %rsp | %rbp | %rsi | %rdi

popg H 58 59 | 5a 5b 5¢ 5d 5e | (BD)

If you get stuck

= Please read the writeup. Please read the writeup. Please read

the writeup. Please read the writeup!
= CS:APP Chapter 3

= View lecture notes and course FAQ at http://www.cs.cmu.edu/~213
« Office hours Sunday through Thursday 5:00-9:00pm in WH 5207

« Post a private question on Piazza

= man gdb, gdb's help command

http://www.cs.cmu.edu/~213

Attack Lab Tools

mgcc —c test.s; objdump —d test.o > test.asm

Compiles the assembly code in test.s and shows the actual bytes for the
instructions

= ./hex2raw < exploit.txt > converted.txt
Convert hex codes in exploit.txt into raw ASCII strings to pass to targets
See the writeup for more details on how to use this

= (gdb) display /12gx $rsp (gdb) display /2i $rip

Displays 12 elements on the stack and the next 2 instructions to run

GDB is also useful to for tracing to see if an exploit is working

