
Carnegie Mellon

15-213 Recitation: Attack Lab

____TA____

25 Sep 2017

Carnegie Mellon

Agenda

■ Reminders

■ Stacks

■ Attack Lab Activities

Carnegie Mellon

Reminders

■ Bomb lab is due tomorrow (14 Feb, 2017) !
■ “But if you wait until the last minute, it only takes a minute!” – NOT!
■ Don’t waste your grace days on this assignment!

■ Attack lab will be released tomorrow!

Carnegie Mellon

Stacks

■ Last-in, first-out

■ x86 stack grows down
■ lowest address is “top”

■ $rsp contains the address of the topmost element in the stack

■ Uses the pushq and popq instructions to push and

pop registers/constants onto and off the stack

Carnegie Mellon

Stack – pushq & popq

■ pushq {value} is equivalent

to

sub $8, %rsp

mov {value}, (%rsp)

■ popq {reg} is equivalent to

mov (%rsp), {reg}

add $8, %rsp

Carnegie Mellon

Stack – Caller vs. Callee

■Function A calls function B
■ A is the caller

■ B is the callee

■ Stack space is allocated in “frames”
■ Represents the state of a single function invocation

■ Frame used primarily for two things:
■ Storing callee saved registers

■ Storing the return address of a funciton

Carnegie Mellon

Registers – Caller-saved vs. Callee-saved

■ Caller-saved
■ Registers used for function

arguments are always caller-

saved

■ $rax is also caller-saved

■ Called function may do as it

wishes with the registers

■ Must save/restore register in

caller’s stack frame if it still needs

the value after a function call

Callee-saved
 If the function wants to change the

register, it must save the original

value in its stack frame and restore

it before returning

 The calling function may store

temporary values in callee-saved

registers

Carnegie Mellon

x86-64 Register Usage Conventions

Carnegie Mellon

Registers – Caller-saved vs. Callee-saved

■ Before function call
■rdi = first argument

■rsi = second argument

■rax = some temporary value

■rbx = some important number to

use later (15213)

■rsp = pointer to some important

buffer (0x7fffffffaaaa)

■ After function call
■rdi = garbage

■rsi = garbage

■rax = return value

■rbx = some important number to

use later (15213)

■rsp = pointer to some important

buffer (0x7fffffffaaaa)

Carnegie Mellon

x86-64/Linux Stack Frame

■ Current Stack Frame (“Top” to Bottom)
■ “Argument build:”

- Parameters for function about to call

■ Local variables

- If can’t keep in registers

■ Saved register context

■ Old frame pointer (optional)

■ Caller Stack Frame
■ Return address

- Pushed by call instruction

■ Arguments for this call

Carnegie Mellon

Stack Maintenance

■ Functions free their frame before returning

■ Return instruction looks for the return address at the

top of the stack

■ …What if the return address has been changed?

Carnegie Mellon

Attack Lab

■ We’re letting you hijack programs by running

buffer overflow attacks on them.
■Is that not justification enough?

■ To understand stack discipline and stack frames

■ To defeat relatively secure programs with return

oriented programming

Carnegie Mellon

Attack Lab Activities

■ Three activities
■ Each relies on a specially crafted assembly sequence to purposefully

overwrite the stack

■ Activity 1 – Overwrites the return addresses

■ Activity 2 – Writes an assembly sequence onto the stack

■ Activity 3 – Uses byte sequences in libc as the

instructions

Carnegie Mellon

Attack Lab Activities

■ One student needs a laptop

■ Login to a shark machine

$ wget http://www.cs.cmu.edu/~213/activities/rec5.tar

$ tar xf rec5.tar

$ cd rec5

$ make

$ gdb act1

http://www.cs.cmu.edu/~213/activities/rec5.tar

Carnegie Mellon

Activity 1

(gdb) break clobber

(gdb) run

(gdb) x $rsp

(gdb) backtrace

Q. Does the value at the top of the stack match any frame?

Carnegie Mellon

Activity 1 Continued

(gdb) x /2gx $rdi // Here are the two key values

(gdb) stepi // Keep doing this until

(gdb)

clobber () at support.s:16

16 ret

(gdb) x $rsp

Q. Has the return address changed?

(gdb) finish // Should exit and print out “Hi!”

Carnegie Mellon

Activity 1 Post

■ Clobber overwrites part of the stack with memory at

$rdi, including the all-important return address

■ In act1 it writes two new return addresses:
■ 0x400500: address of printHi()

■ 0x400560: address in main

0x7fffffffe338

0x000000400553

0x000000400560

0x000000400500

0x000000400560

Call clobber()

Clobber executes

ret

In printHi()

ret

In main()

Carnegie Mellon

Activity 2
$gdb act2

(gdb) break clobber

(gdb) run

(gdb) x $rsp

Q. What is the address of the stack and the return address?

(gdb) x /4gx $rdi

Q. What will the new return address be?

(i.e., what is the first value?)

Carnegie Mellon

Activitity 2 Continued

(gdb) x/5i $rdi + 8 // Display as instructions

Q. Why rdi + 8?

Q. What are the three addresses?

(gdb) break puts

(gdb) break exit

Q. Do these addresses look familiar?

Carnegie Mellon

Activity 2 Post

■ Normally programs cannot execute instructions on the

stack
■ Main used mprotect to disable the memory protection for this activity

■ Clobber wrote an address that’s on the stack as a

return address
■ Followed by a sequence of instructions

■ Three addresses show up in the exploit:

▪ 0x48644d  “Hi\n” string

▪ 0x4022e0  puts() function

▪ 0x4011a0  exit() function

Carnegie Mellon

Activity 3

$gdb act3

(gdb) break clobber

(gdb) run

(gdb) x /5gx $rdi

Q. Which value will be first on the stack?

Q. At the end of clobber, where will the function return to?

Carnegie Mellon

Activity 3 Continued

(gdb) x /2i <return address>

Q. What does this sequence do?

Q. Do the same for the other addresses. Note that some

are return addresses and some are for data. When you

continue, what will the code now do?

Carnegie Mellon

Activity 3 Post

■ It’s harder to stop programs from running existing

pieces of code in the executable.

■ Clobber wrote multiple return addresses (aka gadgets)

that each performed a small task, along with data that

will get popped off the stack while running the gadgets.

■0x457d0c: pop %rdi; retq

■0x47fa64: Pointer to the string “Hi\n”

■0x429a6a: pop %rax; retq

■0x400500: Address of a printing function

■0x47f001: callq *%rax

Carnegie Mellon

■ Note that some of the return addresses actually

cut off bytes from existing instructions

Activity 3 Post

0x457d0b …0c …0d

pop %r15 retq

41 5f c3

pop %rdi retq

5f c3

Carnegie Mellon

If you get stuck

■ Please read the writeup. Please read the writeup. Please read

the writeup. Please read the writeup!

■ CS:APP Chapter 3

■ View lecture notes and course FAQ at http://www.cs.cmu.edu/~213

■ Office hours Sunday through Thursday 5:00-9:00pm in WH 5207

■ Post a private question on Piazza

■ man gdb, gdb's help command

http://www.cs.cmu.edu/~213

Carnegie Mellon

Attack Lab Tools
gcc –c test.s; objdump –d test.o > test.asm

Compiles the assembly code in test.s and shows the actual bytes for the

instructions

 ./hex2raw < exploit.txt > converted.txt
Convert hex codes in exploit.txt into raw ASCII strings to pass to targets

See the writeup for more details on how to use this

 (gdb) display /12gx $rsp (gdb) display /2i $rip
Displays 12 elements on the stack and the next 2 instructions to run

GDB is also useful to for tracing to see if an exploit is working

