
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 8: Exam Stack Review

15-213: Introduction to Computer Systems
Oct 16, 2017

Instructor:

Your TA(s)

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Midterm Exam This Week

 3 hours + 1 hour for regrade requests

 1 double-sided page of notes
 No preworked problems from prior exams

 7 questions

 Report to the room
 TA will verify your notes and ID

 TAs will give you your exam server password

 Login via Andrew, then navigate to exam server and use special
exam password

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Review

 In the following questions, treat them like the exam
 Can you answer them from memory?

 Write down your answer

 Talk to your neighbor, do you agree?

 Discuss:
What is the stack used for?

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack Manipulation

 We execute:

mov $0x15213, %rax

pushq %rax

 Which of the following instructions will place the value
0x15213 into %rcx?

1) mov (%rsp), %rcx

2) mov 0x8(%rsp), %rcx

3) mov %rsp, %rcx

4) popq %rcx

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Stack is memory

 We execute:

mov $0x15213, %rax

pushq %rax

popq %rax

 If we now execute: mov -0x8(%rsp), %rcx

what value is in %rcx?

1) 0x0 / NULL

2) Seg fault

3) Unknown

4) 0x15213

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Calling Convention

 What does the calling convention govern?

1) How large each type is.

2) How to pass arguments to a function.

3) The alignment of fields in a struct.

4) When registers can be used by a function.

5) Whether a function can call itself.

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage
 The calling convention gives meaning to every register,

describe the following 9 registers:

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

%rbx

%rbp

Function Argument

Return Value

Callee Save

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage
 The calling convention gives meaning to every register,

describe the following 9 registers:

%rdi

%rsi

%rdx

%rcx

%r8

%r9

%rax

%rbx

%rbp

Function Argument

Return Value

Callee Save

4

3

2

1

5

6

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage

 Which line is the first violation of the calling convention?

mov $0x15213, %rax

push %rax

mov 0x10(%rsp), %rcx

mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Register Usage

 Which line is the first violation of the calling convention?

mov $0x15213, %rax

push %rax

mov 0x10(%rsp), %rcx

mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx Until this point, the callee has
preserved the callee-save value.

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sometimes arguments are implicit

How many arguments does “rsr” take?

How many registers are changed before the function call?

(Note, %sil is the low 8 bits of %rsi)

0x0400596 <+0>: cmp %sil,(%rdi,%rdx,1)

0x040059a <+4>: je 0x4005ae <rsr+24>

0x040059c <+6>: sub $0x8,%rsp

0x04005a0 <+10>: sub $0x1,%rdx

0x04005a4 <+14>: callq 0x400596 <rsr>

0x04005a9 <+19>: add $0x8,%rsp

0x04005ad <+23>: retq

0x04005ae <+24>: mov %edx,%eax

0x04005b0 <+26>: retq

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Arguments can already be “correct”

 rsr does not modify s and t, so the arguments in those
registers are always correct

int rsr(char* s, char t, size_t pos)

{

if (s[pos] == t) return pos;

return rsr(s, t, pos - 1);

}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recursive calls

 Describe the stack after doThis(4) returns.

void doThis(int count)

{

char buf[8];

strncpy(buf, “Hi 15213”, sizeof(buf));

if (count > 0) doThis(count – 1);

}

push %rbx

sub $0x10, %rsp

mov %edi,%ebx

movabs $0x3331323531206948,%rax

mov %rax,(%rsp)

...

