Future of Computing II: What's So Special About Big Learning?

15-213 / 18-213 / 15-513: Introduction to Computer Systems 28th Lecture, December 5, 2017

Today's Instructor:

Phil Gibbons

What's So Special about...Big Data?

Focus of this Talk: Big Learning

- Machine Learning over Big Data
- Examples:
 - Collaborative Filtering (via Matrix Factorization)
 - Recommending movies
 - Topic Modeling (via LDA)
 - Clusters documents into K topics
 - Multinomial Logistic Regression
 - Classification for multiple discrete classes
 - Deep Learning neural networks:

Also: Iterative graph analytics, e.g. PageRank

Big Learning Frameworks & Systems

 Goal: Easy-to-use programming framework for Big Data Analytics that delivers good performance on large (and small) clusters

- A few popular examples (historical context):
 - Hadoop (2006-)
 - GraphLab / Dato (2009-)
 - Spark / Databricks (2009-)

Hadoop

- Hadoop Distributed File System (HDFS)
- Hadoop YARN resource scheduler
- Hadoop MapReduce

Key Learning: Ease of use trumps performance

GraphLab

Graph Parallel: "Think like a vertex"

Graph Based

Data Representation

Scheduler

Update Functions
User Computation

Consistency Model

MIELACIA AL MELACIA EL MANTENA

Triangle Counting* in Twitter Graph

*How often are two of a user's friends also friends?

40M Users 1.2B Edges

Total: 34.8 Billion Triangles

Key Learning: Graph Parallel is MUCH faster than Hadoop!

GraphLab & GraphChi

Distributed Graph Processing System

How Fast Can we Go?

Disk/SSD Graph Processing System

How Large Can we Go?

How to handle high degree nodes: GAS approach

Can do fast BL on a machine w/SSD-resident data

Spark: Key Idea

Features:

- In-memory speed w/fault tolerance via lineage tracking
- Bulk Synchronous

Resilient Distributed Datasets: A Fault-Tolerant Abstraction for InMemory Cluster Computing,

[Zaharia et al, NSDI'12, best paper]

A restricted form of shared memory, based on coarse-grained deterministic transformations rather than fine-grained updates to shared state: expressive, efficient and fault tolerant

In-memory compute can be fast & fault-tolerant

Spark's Open Source Impact

Spark Timeline

- Research breakthrough in 2009
- First open source release in 2011
- Into Apache Incubator in 2013
- In all major Hadoop releases by 2014

- Pipeline of research breakthroughs (publications in best conferences) fuel continued leadership & uptake
- Start-up (Databricks), Open Source Developers, and Industry partners (IBM, Intel) make code commercial-grade

Fast path for Academics impact via Open Source: Pipeline of research breakthroughs into widespread commercial use in 2 years!

Big Learning Frameworks & Systems

 Goal: Easy-to-use programming framework for Big Data Analytics that delivers good performance on large (and small) clusters

- A few popular examples (historical context):
 - Hadoop (2006-)
 - GraphLab / Dato (2009-)
 - Spark / Databricks (2009-)

 Our Idea: Discover & take advantage of distinctive properties ("what's so special") of Big Learning training algorithms

What's So Special about Big Learning? ...A Mathematical Perspective

- Formulated as an optimization problem
 - Use <u>training data</u> to learn <u>model parameters</u> that minimize/maximize an <u>objective function</u>
- No closed-form solution, instead algorithms iterate until convergence
 - E.g., Stochastic Gradient Descent

Image from charlesfranzen.com

Recall: Training DNNs

Characteristics

- Iterative numerical algorithm
- Regular data organization

Project Adam Training

- 2B connections
- 15M images
- 62 machines
- 10 days

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Bad News

- Lots of Computation / Memory
 - Many iterations over Big Data
 - Big Models
 - → Need to distribute computation widely
- Lots of Communication / Synchronization
 - Not readily "partitionable"
- **→** Model Training is SLOW
 - hours to days to weeks, even on many machines

...why good distributed systems research is needed!

Big Models, Widely Distributed

[Li et al, OSDI'14]

Lots of Communication / Synchronization e.g. in BSP Execution (Hadoop, Spark)

 Exchange ALL updates at END of each iteration

Frequent, bursty communication

 Synchronize ALL threads each iteration

Straggler problem: stuck waiting for slowest

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning
- 7. Most parameter updates are insignificant

...can exploit to run orders of magnitude faster!

Parameter Servers for Distributed ML

- Provides all workers with convenient access to global model parameters
 - "Distributed shared memory" programming style

Single Machine Parallel

```
UpdateVar(i) {
  old = y[i]
  delta = f(old)
  y[i] += delta }
```

Distributed with PS

```
UpdateVar(i) {
  old = PS.read(y,i)
  delta = f(old)
  PS.inc(y,i,delta) }
```

[Power & Li, OSDI'10], [Ahmed et al, WSDM'12], [NIPS'13], [Li et al, OSDI'14], Petuum, MXNet, TensorFlow, etc

Problem: Cost of Bulk Synchrony

- Exchange ALL updates at END of each iteration
- Synchronize ALL threads each iteration

Bulk Synchrony => Frequent, bursty communication & stuck waiting for stragglers

But: **Fully asynchronous** => No algorithm convergence guarantees

Stale Synchronous Parallel (SSP)

Fastest/slowest threads not allowed to drift >S iterations apart

Allow threads to <u>usually</u> run at own pace

Protocol: check cache first; if too old, get latest version from network Choice of S: Staleness "sweet spot"

Exploits: 1. commutative/associative updates &

2. tolerance for lazy consistency (bounded staleness)

[NIPS'13] [ATC'14]

Staleness Sweet Spot

Topic Modeling

Nytimes dataset
400k documents
100 topics
LDA w/Gibbs sampling
8 machines x 64 cores
40Gbps Infiniband

[ATC'14]

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern 🛑
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning
- 7. Most parameter updates are insignificant

...can exploit to run orders of magnitude faster!

Repeated Data Access in PageRank

Input data: a set of links, stored locally in workers Parameter data: ranks of pages, stored in PS


```
Init ranks to random value
loop
foreach link from i to j {
    read Rank(i)
    update Rank(j)
  }
while not converged
```

Repeated Data Access in PageRank

Input data: a set of links, stored locally in workers Parameter data: ranks of pages, stored in PS

Worker-0

```
# Link-0
read page[2].rank
update page[0].rank
# Link-1
read page[1].rank
update page[2].rank
clock()
while not converged
```

Repeated access sequence depends only on input data (not on parameter values)

Exploiting Repeated Data Access

Collect access sequence in "virtual iteration"

Enables many optimizations:

1. Parameter data placement across machines

Exploiting Repeated Data Access

Collect access sequence in "virtual iteration"

Enables many optimizations:

- 1. Parameter data placement across machines
- 2. Prefetching
- 3. Static cache policies
- 4. More efficient marshalling-free data structures
- 5. NUMA-aware memory placement
- Benefits are resilient to moderate deviation in an iteration's actual access pattern

IterStore: Exploiting Iterativeness

[SoCC'14]

Collaborative Filtering
(Matrix Factorization)
NetFlix data set
8 machines x 64 cores
40 Gbps Infiniband

99 iterations

4-5x faster than baseline 11x faster than GraphLab

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure 🛑
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning
- 7. Most parameter updates are insignificant

...can exploit to run orders of magnitude faster!

Addressing the Straggler Problem

- Many sources of transient straggler effects
 - Resource contention
 - System processes (e.g., garbage collection)
 - Slow mini-batch at a worker

Causes significant slowdowns for Big Learning

- FlexRR: SSP + Low-overhead work migration (RR) to mitigate transient straggler effects
 - Simple: Tailored to Big Learning's special properties
 E.g., cloning (used in MapReduce) would break the algorithm (violates idempotency)!
 - Staleness provides slack to do the migration

Rapid-Reassignment (RR) Protocol

- Multicast to preset possible helpees (has copy of tail of helpee's input data)
- Intra-iteration progress measure: percentage of input data processed
- Can process input data in any order
- Assignment is percentage range
- State is only in PS
- Work must be done exactly once

FlexRR Performance

Netflix dataset

Both SSP & RR required. Nearly ideal straggler mitigation

.A Distributed Systems Perspective

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints 🛑
- 6. Layer-by-layer pattern of deep learning
- 7. Most parameter updates are insignificant

...can exploit to run orders of magnitude faster!

Bosen: Managed Communication

- Combine SSP's lazy transmission of parameter updates with:
 - early transmission of larger parameter changes
 (Idea: larger change likely to be an important update)
 - up to bandwidth limit & staleness limit

LDA Topic Modeling Nytimes dataset 16x8 cores

[SoCC'15]

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning
- 7. Most parameter updates are insignificant

...can exploit to run orders of magnitude faster!

Recall: Data Analysis with Deep Neural Networks

Task:

Compute classification of set of input signals

Training

- Use many training samples of form input / desired output
- Compute weights that minimize classification error

Operation

Propagate signals from input to output

Distributed Deep Learning

Partitioned training data

DistributedML workers

Shared model parameters

Layer-by-Layer Pattern of DNN

Class probabilities

Training images

- For each iteration (mini-batch)
 - A forward pass
 - Then a backward pass

Pairs of layers used at a time

GeePS: Parameter Server for GPUs

- Careful management of GPU & CPU memory
 - Use GPU memory as cache to hold pairs of layers
 - Stage remaining data in larger CPU memory

GeePS is 13x faster than Caffe (1 GPU) on 16 machines, 2.6x faster than IterStore (CPU parameter server)

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning
- 7. Most parameter updates are insignificant \leftarrow

...can exploit to run orders of magnitude faster!

Geo-Distributed Machine Learning

- Data sources are everywhere (geo-distributed)
 - Too expensive (or not permitted) to ship all data to single data center

ML training done across the WAN

Gaia System Overview

 Key idea: Decouple the synchronization model within the data center from the synchronization model between data centers

Performance - 11 EC2 Data Centers

Gaia achieves 3.7-6.0X speedup over Baseline
Gaia is within 1.40X of LAN speeds
Also: Gaia is 2.6-8.5X cheaper than Baseline

Baseline: IterStore for CPUs, GeePS for GPUs

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters \leftarrow
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning
- 7. Most parameter updates are insignificant

...can exploit to run orders of magnitude faster!

Proteus: Playing the Spot Market

 Spot Instances are often 85%-90% cheaper, but can be taken away at short notice

Different machine types have uncorrelated spikes

[EuroSys'17]

Proteus uses agile tiers of reliability + aggressive bidding for cheap (free) compute

What's So Special about Big Learning? ... A Distributed Systems Perspective

The Good News

- 1. Commutative/Associative parameter updates
- 2. Tolerance for lazy consistency of parameters
- 3. Repeated parameter data access pattern
- 4. Intra-iteration progress measure
- 5. Parameter update importance hints
- 6. Layer-by-layer pattern of deep learning
- 7. Most parameter updates are insignificant

...can exploit to run orders of magnitude faster!

Thanks to Collaborators & Sponsors

- CMU Faculty: Greg Ganger, Garth Gibson, Eric Xing
- CMU/ex-CMU Students: James Cipar, Henggang Cui,
 Wei Dai, Jesse Haber-Kucharsky, Aaron Harlap, Qirong Ho,
 Kevin Hsieh, Jin Kyu Kim, Dimitris Konomis, Abhimanu Kumar,
 Seunghak Lee, Aurick Qiao, Alexey Tumanov, Nandita Vijaykumar,
 Jinliang Wei, Lianghong Xu, Hao Zhang

 (Bold=first author)

Sponsors:

- PDL Consortium: Avago, Citadel, EMC, Facebook, Google, Hewlett-Packard Labs, Hitachi, Intel, Microsoft Research, MongoDB, NetApp, Oracle, Samsung, Seagate, Symantec, Two Sigma, Western Digital
- Intel (via ISTC for Cloud Computing & ISTC for Visual Cloud Systems)
- National Science Foundation

(Many of these slides adapted from slides by the students)

References

(in order of first appearance)

[Zaharia et al, NSDI'12] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. Usenix NSDI, 2012.

[Li et al, OSDI'14] M. Li, D. G. Anderson, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. Usenix OSDI, 2014.

[Power & Li, OSDI'10] R. Power and J. Li. Piccolo: Building Fast, Distributed Programs with Partitioned Tables. Usenix OSDI, 2010.

[Ahmed et al, WSDM'12] A. Ahmed, M. Aly, J. Gonzalez, S. M. Narayanamurthy, and A. J. Smola. Scalable inference in latent variable models. ACM WSDM, 2012.

[NIPS'13] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. Gibson, G. Ganger, and E. Xing. More effective distributed ML via a state synchronous parallel parameter server. NIPS, 2013.

[Petuum] petuum.org

[MXNet] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, and Z. Zhang. MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv:1512.01274, 2015.

[TensorFlow] tensorflow.org

[ATC'14] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Exploiting Bounded Staleness to Speed Up Big Data Analytics. Usenix ATC, 2014.

[Socc'14] H. Cui, A. Tumanov, J. Wei, L. Xu, W. Dai, J. Haber-Kucharsky, Q. Ho, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Exploiting iterative-ness for parallel ML computations. ACM Socc, 2014.

[SoCC'16] A. Harlap, H. Cui, W. Dai, J. Wei, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Addressing the straggler problem for iterative convergent parallel ML. ACM SoCC, 2016.

References (cont.)

[SoCC'15] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B. Gibbons, G. A. Gibson, and E. P. Xing. Managed Communication and Consistency for Fast Data-Parallel Iterative Analytics. ACM SoCC, 2015.

[EuroSys'16] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, E. P. Xing. GeePS: Scalable deep learning on distributed GPUs with a GPU-specialized parameter server. EuroSys, 2016.

[NSDI'17] K. Hsieh, A. Harlap, N. Vijaykumar, D. Konomis, G. R. Ganger, P. B. Gibbons, and O. Mutlu. Gaia: Geo-Distributed Machine Learning Approaching LAN Speeds. NSDI, 2017.

[EuroSys'17] A. Harlap, A. Tumanov, A. Chung, G. R. Ganger, and P. B. Gibbons. Proteus: agile ML elasticity through tiered reliability in dynamic resource markets. ACM EuroSys, 2017.

Thanks for a Great Semester!

Good Luck on the Final!