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Moore’s Law Origins

April 19, 1965
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Moore’s Law Origins

Moore’s Thesis
n Minimize price per 

device 
n Optimum number of 

devices / chip increasing 
2x / year

Later
n 2x / 2 years
n “Moore’s Prediction”

1965: 50

1970: 1000
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Moore’s Law: 50 Years
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What Moore’s Law Has Meant

1976 Cray 1
n 250 M Ops/second
n ~170,000 chips
n 0.5B transistors
n 5,000 kg, 115 KW
n $9M
n 80 manufactured

2017 iPhone X
n > 10 B Ops/second
n 16 chips
n 4.3B transistors (CPU only)
n 174 g, < 5 W
n $999
n ~3 million sold in first 3 days
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What Moore’s Law Has Meant

1965 Consumer 
Product

2017 Consumer 
Product

Apple A11 Processor
4.3B transistors



– 7 –

Visualizing Moore’s Law to Date

Intel 4004
1970

2,300 transistors

Apple A11
2017

4.3 B transistors

If transistors were the size of a grain of sand

0.1 g

189 kg
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Moore’s Law Economics

Capital +
R&D 

Investment

New Technology

Product
Design

Sales $$Better
Products

Consumer products sustain the
$300B semiconductor industry
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What Moore’s Law Has Meant
12 generations of iPhone since 2007
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What Moore’s Law Could Mean

2017 Consumer 
Product

2065 Consumer Product

n Portable
n Low power
n Will drive markets & 

innovation
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Requirements for Future Technology

Must be suitable for portable, low-power operation
n Consumer products
n Internet of Things components
n Not cryogenic, not quantum

Must be inexpensive to manufacture
n Comparable to current semiconductor technology

l O(1) cost to make chip with O(N) devices

Need not be based on transistors
n Memristors, carbon nanotubes, DNA transcription, ...
n Possibly new models of computation
n But, still want lots of devices in an integrated system
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Moore’s Law: 100 Years

1017 devices!
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Visualizing 1017 Devices

0.1 m3

3.5 X 109 grains
1 million m3

0.35 X 1017 grains

If devices were the size of a 
grain of sand
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Increasing Transistor Counts

1. Chips have gotten bigger
n 1 area doubling / 10 years

2. Transistors have gotten smaller
n 4 density doublings / 10 years

Will these trends continue?



– 15 –

Chips Have Gotten Bigger
Intel 4004

1970
2,300 transistors

12 mm2

Apple A11
2017

4.3 B transistors
89 mm2

NVIDIA GV100 Volta
2017

21.1 B transistors
815 mm2
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Chip Size Trend

2x every 9.8 years
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Chip Size Extrapolation

147 cm2
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Extrapolation: The iPhone XXX
Apple A111

2065
1017 transistors

147 cm2
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Transistors Have Gotten Smaller

n Area A
n N devices
n Linear Scale L L = A / N

L
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Linear Scaling Trend
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Decreasing Feature Sizes

Intel 4004
1970

2,300 transistors
L = 72,000 nm

Apple A11
2017

4.3 B transistors
L = 144 nm
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Submillimeter Dimensions

1	micrometer	(μm)

10-3

10-4

10-5

10-6

5μm: Spider	silk	thickness

72μm: Intel	4004	linear	scale
50μm: Average	size	of	cell	in	human	body

500μm: Length	of	amoeba

10μm: Thickness	of	sheet	of	plastic	food	wrap

2μm: E	coli	bacterium	length

1	millimeter	(mm)



– 24 –

Submicrometer Dimensions

1	micrometer	(μm)

1	nanometer	(nm)

10-6

10-7

10-8

10-9 1nm: Carbon	nanotube	diameter

2nm: DNA	helix	diameter

9nm: Cell	membrane	thickness

144nm: Apple	A11	linear	scale

30nm: Minimum	cooking	oil	smoke	particle	diameter

400-700nm:	Visible	light	wavelengths
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Subnanometer Dimensions

1	nanometer	(nm)

1	picometer (pm)

10-9

10-10

10-11

10-12

2.4pm: Electron	wavelength	(Compton	wavelength)

53pm: Electron-proton	spacing	in	hydrogen	(Bohr	radius)

1nm: Carbon	nanotube	diameter
543pm: Silicon	crystal	lattice	spacing

74pm: Spacing	between	atoms	in	hydrogen	molecule

243pm: 2065	linear	scale	projection
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Reaching 2065 Goal

Target
n 1017 devices
n 400 mm2

n L = 63 pm

Is this possible? Not with 2-d
fabrication
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Fabricating in 3 Dimensions

Parameters
n 1017 devices
n 100,000 logical layers

l Each 50 nm thick
l ~1,000,000 physical layers

» To provide wiring and isolation
n L = 20 nm

l 10x smaller than today 2065 mm3

20 mm

20 mm5 mm

2000 mm3
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3D Fabrication Challenges

Yield
n How to avoid or tolerate flaws

Cost
n High cost of lithography

Power
n Keep power consumption within acceptable limits
n Limited energy available
n Limited ability to dissipate heat
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Photolithography

n Pattern entire chip in one step
n Modern chips require ~60 lithography steps
n Fabricate N transistor system with O(1) steps
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Fabrication Costs

Stepper
n Most expensive equipment in fabrication facility
n Rate limiting process step

l 18s / wafer
n Expose 858 mm2 per step

l 1.2% of chip area
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Fabrication Economics

Currently
n Fixed number of lithography steps
n Manufacturing cost $10–$20 / chip

l Including amortization of facility

Fabricating 1,000,000 physical layers
n Cannot do lithography on every step

Options
n Chemical self assembly

l Devices generate themselves via chemical processes
n Pattern multiple layers at once
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Samsung V-Nand Flash Example

n Build up layers of unpatterned material
n Then use lithography to slice, drill, etch, and deposit 

material across all layers
n ~30 total masking steps
n 64 layers of memory cells (soon to be 96)
n Exploits particular structure of flash memory circuits



– 34 –

Meeting Power Constraints

n 4.3 B transistors
n 2.3 GHz operation
n 1—5 W

n 64 B neurons
n 100 Hz operation
n 15—25 W

l Liquid cooling
l Up to 25% body’s total 

energy consumption

Can we increase number of 
devices by 23,000,000x without 
increasing power 
requirement?
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Challenges to Moore’s Law: 
Economic

Growing Capital Costs
n State of art fab line ~$20B
n Must have very high volumes to 

amortize investment
n Has led to major consolidations
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Dennard Scaling
§ Due	to	Robert	Dennard,	IBM,	1974
§ Quantifies	benefits	of	Moore’s	Law

¢ How	to	shrink	an	IC	Process
§ Reduce	horizontal	and	vertical	dimensions	by	k
§ Reduce	voltage	by	k

¢ Outcomes
§ Devices	/	chip	increase	by	k2

§ Clock	frequency	increases	by	k
§ Power	/	chip	constant

¢ Significance
§ Increased	capacity	and	performance
§ No	increase	in	power
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End	of	Dennard Scaling

¢ What	Happened?
§ Can’t	drop	voltage	below	~1V
§ Reached	limit	of	power	/	chip	in	2004
§ More	logic	on	chip	(Moore’s	Law),	but	can’t	make	them	run	faster

§ Response	has	been	to	increase	cores	/	chip
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Some	Thoughts	about	Technology
¢ Compared	to	future,	past	50	years	will	seem	fairly	

straightforward
§ 50	years	of	using	photolithography	to	pattern	transistors	on	two-

dimensional	surface

¢ Questions	about	future	integrated	systems
§ Can	we	build	them?
§ What	will	be	the	technology?
§ Are	they	commercially	viable?
§ Can	we	keep	power	consumption	low?
§ What	will	we	do	with	them?
§ How	will	we	program	/	customize	them?
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HIGH-PERFORMANCE	COMPUTING
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Comparing	Two	Large-Scale	Systems

¢ Oakridge	Titan

§ Monolithic	
supercomputer	(4th
fastest	in	world)

§ Designed	for	compute-
intensive	applications

¢ Google	Data	Center

§ Servers	to	support	
millions	of	customers

§ Designed	for	data	
collection,	storage,	and	
analysis
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Computing	Landscape

Computational	Intensity

Personal
Computing

Cloud
Services

Da
ta
	In

te
ns
ity

Modeling	&
Simulation-Driven

Science	&
Engineering

Traditional	Supercomputing

• Web	search
• Mapping	/	directions
• Language	translation
• Video	streaming

Google	Data	Center

Oakridge	Titan

Internet-Scale
Computing
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Supercomputing	Landscape

Computational	Intensity

Personal
Computing

Da
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	In
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Modeling	&
Simulation-Driven

Science	&
Engineering

Traditional	Supercomputing
Oakridge	Titan
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Supercomputer	Applications

¢ Simulation-Based	Modeling
§ System	structure	+	initial	conditions	+	transition	behavior
§ Discretize	time	and	space
§ Run	simulation	to	see	what	happens

¢ Requirements
§ Model	accurately	reflects	actual	system
§ Simulation	faithfully	captures	model

Science Industrial 
Products

Public Health
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Titan	Hardware

¢ Each	Node
§ AMD	16-core	processor
§ nVidia	Graphics	Processing	Unit
§ 38	GB	DRAM
§ No	disk	drive

¢ Overall
§ 7MW,	$200M

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node 18,688

• • •
GPU GPU GPU
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Titan	Node	Structure:	CPU

¢ CPU
§ 16	cores	sharing	common	memory
§ Supports	multithreaded	programming
§ ~0.16	x	1012 floating-point	operations	per	second	(FLOPS)	peak	
performance

DRAM
Memory
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Titan	Node	Structure:	GPU

¢ Kepler	GPU
§ 14	multiprocessors
§ Each	with	12	groups	of	16	stream	processors

§ 14	X	12	X	16	=	2688	

§ Single-Instruction,	Multiple-Data	parallelism
§ Single	instruction	controls	all	processors	in	group

§ 4.0	x	1012 FLOPS	peak	performance
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Titan	Programming:	Principle

¢ Solving	Problem	Over	Grid
§ E.g.,	finite-element	system
§ Simulate	operation	over	time

¢ Bulk	Synchronous	Model
§ Partition	into	Regions

§ p	regions	for	p-node	machine

§ Map	Region	per	Processor
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Titan	Programming:	Principle	(cont)

¢ Bulk	Synchronous	Model
§ Map	Region	per	Processor
§ Alternate

§ All	nodes	compute	behavior	of	
region
– Perform	on	GPUs

§ All	nodes	communicate	values	at	
boundaries

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute
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Bulk	Synchronous	Performance

§ Limited	by	performance	of	
slowest	processor

¢ Strive	to	keep	perfectly	
balanced
§ Engineer	hardware	to	be	highly	
reliable

§ Tune	software	to	make	as	regular	
as	possible

§ Eliminate	“noise”
§ Operating	system	events
§ Extraneous	network	activity

P1 P2 P3 P4 P5

Communicate

Communicate

Communicate

Compute

Compute

Compute
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Titan	Programming:	Reality
¢ System	Level

§ Message-Passing	Interface	(MPI)	supports	node	
computation,	synchronization	and	communication

¢ Node	Level
§ OpenMP	supports	thread-level	operation	of	node	CPU
§ CUDA	programming	environment	for	GPUs

§ Performance	degrades	quickly	if	don’t	have	perfect	balance	
among	memories	and	processors

¢ Result
§ Single	program	is	complex	combination	of	multiple	
programming	paradigms

§ Tend	to	optimize	for	specific	hardware	configuration
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My	GPU	Experience
¢ Multiply	two	1024	x	1024	matrices	(MM)

§ 2	X	109 floating	point	operations
§ Express	performance	in	Giga	FLOPS
§ Program	in	CUDA	and	map	onto	nVidia GPU
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Matrix	Multiplication	Progress
¢ Versions

§ Naive 1
§ Simple	parallel 11
§ Blocking 70
§ nVidia Example	Code 388
§ Reorient	memory	accesses 382
§ Packed	data	access 777

¢ Observations
§ Progress	is	very	nonlinear

§ Not	even	monotonic
§ Requires	increased	understanding	of	how	program	maps	onto	

hardware
§ Becomes	more	specialized	to	specific	hardware	configuration
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Supercomputer	Programming	Model

§ Program	on	top	of	bare	hardware

¢ Performance
§ Low-level	programming	to	
maximize	node	performance

§ Keep	everything	globally	
synchronized	and	balanced

¢ Reliability
§ Single	failure	causes	major	delay
§ Engineer	hardware	to	minimize	
failures

Hardware

Machine-Dependent
Programming Model

Software
Packages

Application
Programs
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Data-Intensive	
Computing	Landscape

Computational	Intensity

Personal
Computing

Cloud
Services

Da
ta
	In

te
ns
ity

• Web	search
• Mapping	/	directions
• Language	translation
• Video	streaming

Google	Data	Center

Internet-Scale
Computing
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Internet	Computing

¢ Web	Search
§ Aggregate	text	data	from	

across	WWW
§ No	definition	of	correct	

operation
§ Do	not	need	real-time	

updating

¢ Mapping	Services
§ Huge	amount	of	(relatively)	

static	data
§ Each	customer	requires	

individualized	computation

¢ Online	Documents
§ Must	be	stored	reliably
§ Must	support	real-time	

updating
§ (Relatively)	small	data	

volumes
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Other	Data-Intensive	Computing	Applications

¢ Wal-Mart
§ 267	million	items/day,	sold	at	6,000	stores
§ HP	built	them	4	PB	data	warehouse
§ Mine	data	to	manage	supply	chain,	understand	
market	trends,	formulate	pricing	strategies

¢ LSST
§ Chilean	telescope	will	scan	entire	sky	every	3	days
§ A	3.2	gigapixel	digital	camera
§ Generate	30	TB/day	of	image	data
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Data-Intensive	Application	Characteristics

¢ Diverse	Classes	of	Data
§ Structured	&	unstructured
§ High	&	low	integrity	requirements

¢ Diverse	Computing	Needs
§ Localized	&	global	processing
§ Numerical	&	non-numerical
§ Real-time	&	batch	processing
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Google	Data	Centers

¢Dalles,	Oregon
§ Hydroelectric	power	@	2¢	/	KW	Hr
§ 50	Megawatts
§ Enough	to	power	60,000	homes

§ Engineered	for	low	cost,	
modularity	&	power	efficiency

§ Container:	1160	server	nodes,	
250KW
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Google	Cluster

§ Typically	1,000−2,000	nodes

¢ Node	Contains
§ 2	multicore	CPUs
§ 2	disk	drives
§ DRAM

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

• • •
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Hadoop	Project
¢ File	system	with	files	distributed	across	nodes

§ Store	multiple	(typically	3	copies	of	each	file)
§ If	one	node	fails,	data	still	available

§ Logically,	any	node	has	access	to	any	file
§ May	need	to	fetch	across	network

¢ Map	/	Reduce	programming	environment
§ Software	manages	execution	of	tasks	on	nodes

Local Network

CPU

Node 1

CPU

Node 2

CPU

Node n

• • •
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Map/Reduce Programming Model

n Map computation across many objects
l E.g., 1010 Internet web pages

n Aggregate results in many different ways
n System deals with issues of resource allocation & reliability

M

x1

M

x2

M

x3

M

xn

k1

Map

Reduce
k1

kr

• • •

• • •

Key-Value
Pairs

Dean & Ghemawat: “MapReduce: Simplified Data 
Processing on Large Clusters”, OSDI 2004
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Cluster	Programming	Model

§ Application	programs	written	in	
terms	of	high-level	operations	on	
data

§ Runtime	system	controls	
scheduling,	load	balancing,	…

¢ Scaling	Challenges
§ Centralized	scheduler	forms	

bottleneck
§ Copying	to/from	disk	very	costly
§ Hard	to	limit	data	movement

§ Significant	performance	factor

Hardware

Machine-Independent
Programming Model

Runtime
System

Application
Programs



Carnegie Mellon

63Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition
6
3

Recent	Programming	Systems

¢ Spark	Project

§ at	U.C.,	Berkeley
§ Grown	to	have	large	open	source	community

¢ GraphLab
§ Started	as	project	at	CMU	by	Carlos	Guestrin
§ Environment	for	describing	machine-learning	algorithms

§ Sparse	matrix	structure	described	by	graph
§ Computation	based	on	updating	of	node	values
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Computing 
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Supercomputing

Mixing simulation
with data analysis



Carnegie Mellon

65Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition
6
5

Combining	Simulation	with	Real	Data

¢ Limitations
§ Simulation	alone:	Hard	to	know	if	model	is	correct
§ Data	alone:	Hard	to	understand	causality	&	“what	if”

¢ Combination
§ Check	and	adjust	model	during	simulation
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Real-Time	Analytics

¢ Millenium	XXL	Simulation	(2010)
§ 3	X	109 particles
§ Simulation	run	of	9.3	days	on	
12,228	cores

§ 700TB	total	data	generated
§ Save	at	only	4	time	points
§ 70	TB

§ Large-scale	simulations	generate	
large	data	sets

¢ What	If?
§ Could	perform	data	analysis	while	
simulation	is	running Simulation

Engine
Analytic
Engine
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Example Analytic Applications

ClassifierImage Description

Microsoft Project Adam

TransducerEnglish
Text

German
Text
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Data Analysis with Deep Neural 
Networks
Task:

n Compute classification of 
set of input signals

Training
n Use many training samples of form input / desired output
n Compute weights that minimize classification error

Operation
n Propagate signals from input to output
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DNN	Application	Example
¢ Facebook	DeepFace	Architecture
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Training DNNs

Characteristics
n Iterative numerical 

algorithm
n Regular data 

organization

Project Adam Training
n 2B connections
n 15M images
n 62 machines
n 10 days
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Trends

Computational Intensity

Internet-Scale
ComputingD
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Challenges for Convergence
Supercomputers

n Customized
n Optimized for reliability

n Source of “noise”
n Static scheduling

n Low-level, processor-
centric model

Data Center Clusters

n Consumer grade
n Optimized for low cost

n Provides reliability
n Dynamic allocation

n High level, data-centric 
model

Hardware

Run-Time System

Application Programming
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Summary:	Computation/Data	Convergence

¢ Two	Important	Classes	of	Large-Scale	Computing
§ Computationally	intensive	supercomputing
§ Data	intensive	processing

§ Internet	companies	+	many	other	applications

¢ Followed	Different	Evolutionary	Paths
§ Supercomputers:	Get	maximum	performance	from	available	hardware
§ Data	center	clusters:	Maximize	cost/performance	over	variety	of	data-
centric	tasks

§ Yielded	different	approaches	to	hardware,	runtime	systems,	and	application	
programming

¢ A	Convergence	Would	Have	Important	Benefits
§ Computational	and data-intensive	applications
§ But,	not	clear	how	to	do	it


