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Virtual	Memory:	Concepts

15-213:	Introduction	to	Computer	Systems
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Hmmm,	How	Does	This	Work?!
Process	1 Process	2 Process	n

Solution:	Virtual	Memory	(today	and	next	lecture)
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Today
¢ Address	spaces
¢ VM	as	a	tool	for	caching
¢ VM	as	a	tool	for	memory	management
¢ VM	as	a	tool	for	memory	protection
¢ Address	translation
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A	System	Using	Physical	Addressing

¢ Used	in	“simple”	systems	like	embedded	microcontrollers	in	
devices	like	cars,	elevators,	and	digital	picture	frames
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A	System	Using	Virtual	Addressing

¢ Used	in	all	modern	servers,	laptops,	and	smart	phones
¢ One	of	the	great	ideas	in	computer	science
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Address	Spaces
¢ Linear	address	space:	Ordered	set	of	contiguous	non-negative	integer	

addresses:
{0,	1,	2,	3	…	}

¢ Virtual	address	space:	Set	of	N	=	2n virtual	addresses
{0,	1,	2,	3,	…,	N-1}

¢ Physical	address	space:	Set	of	M	=	2m physical	addresses
{0,	1,	2,	3,	…,	M-1}
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Why	Virtual	Memory	(VM)?
¢ Uses	main	memory	efficiently

§ Use	DRAM	as	a	cache	for	parts	of	a	virtual	address	space

¢ Simplifies	memory	management
§ Each	process	gets	the	same	uniform	linear	address	space

¢ Isolates	address	spaces
§ One	process	can’t	interfere	with	another’s	memory
§ User	program	cannot	access	privileged	kernel	information	and	code
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Today
¢ Address	spaces
¢ VM	as	a	tool	for	caching
¢ VM	as	a	tool	for	memory	management
¢ VM	as	a	tool	for	memory	protection
¢ Address	translation



Carnegie Mellon

10Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

VM	as	a	Tool	for	Caching
¢ Conceptually, virtual	memory is	an	array	of	N	contiguous	

bytes	stored	on	disk.	
¢ The	contents	of	the	array	on	disk	are	cached	in	physical	

memory (DRAM	cache)
§ These	cache	blocks	are	called	pages	(size	is	P	=	2p bytes)
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DRAM	Cache	Organization
¢ DRAM	cache	organization	driven	by	the	enormous	miss	penalty

§ DRAM	is	about	10x slower	than	SRAM
§ Disk	is	about	10,000x slower	than	DRAM
§ Time	to	load	block	from	disk	>	1ms	(>	1	million	clock	cycles)

§ CPU	can	do	a	lot	of	computation	during	that	time

¢ Consequences
§ Large	page	(block)	size:	typically	4	KB,	sometimes	4	MB
§ Fully	associative	

§ Any	VP	can	be	placed	in	any	PP
§ Requires	a	“large”	mapping	function	– different	from	cache	memories

§ Highly	sophisticated,	expensive	replacement	algorithms
§ Too	complicated	and	open-ended	to	be	implemented	in	hardware

§ Write-back	rather	than	write-through
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Enabling	Data	Structure:	Page	Table
¢ A	page	table	is	an	array	of	page	table	entries	(PTEs)	that	

maps	virtual	pages	to	physical	pages.	
§ Per-process	kernel	data	structure	in	DRAM
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Page	Hit
¢ Page	hit:	reference	to	VM	word	that	is	in	physical	memory	

(DRAM	cache	hit)
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Page	Fault
¢ Page	fault:	reference	to	VM	word	that	is	not	in	physical	

memory	(DRAM	cache	miss)
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Handling	Page	Fault
¢ Page	miss	causes	page	fault	(an	exception)
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Handling	Page	Fault
¢ Page	miss	causes	page	fault	(an	exception)
¢ Page	fault	handler	selects	a	victim	to	be	evicted	(here	VP	4)

null

null

Memory	resident
page	table
(DRAM)

Physical	memory
(DRAM)

VP	7
VP	4

Virtual	memory
(disk)

Valid
0
1

0
1
0

1
0

1

Physical	page
number	or	
disk	address

PTE	0

PTE	7

PP	0
VP	2
VP	1

PP	3

VP	1

VP	2

VP	4

VP	6

VP	7

VP	3

Virtual	address



Carnegie Mellon

17Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Handling	Page	Fault
¢ Page	miss	causes	page	fault	(an	exception)
¢ Page	fault	handler	selects	a	victim	to	be	evicted	(here	VP	4)
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Handling	Page	Fault
¢ Page	miss	causes	page	fault	(an	exception)
¢ Page	fault	handler	selects	a	victim	to	be	evicted	(here	VP	4)
¢ Offending	instruction	is	restarted:	page	hit!
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Allocating	Pages
¢ Allocating	a	new	page	(VP	5)	of	virtual	memory.

¢ Subsequent	miss	will	bring	it	into	memory
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Locality	to	the	Rescue	Again!
¢ Virtual	memory	seems	terribly	inefficient,	but	it	works	

because	of	locality.	

¢ At	any	point	in	time,	programs	tend	to	access	a	set	of	active	
virtual	pages	called	the	working	set
§ Programs	with	better	temporal	locality	will	have	smaller	working	sets

¢ If	(working	set	size	<	main	memory	size)	
§ Good	performance	for	one	process	after	compulsory	misses

¢ If	(	SUM(working	set	sizes)	>	main	memory	size	)	
§ Thrashing: Performance	meltdown where	pages	are	swapped	(copied)	

in	and	out	continuously
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Today
¢ Address	spaces
¢ VM	as	a	tool	for	caching
¢ VM	as	a	tool	for	memory	management
¢ VM	as	a	tool	for	memory	protection
¢ Address	translation
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VM	as	a	Tool	for	Memory	Management
¢ Key	idea:	each	process	has	its	own	virtual	address	space

§ It	can	view	memory	as	a	simple	linear	array
§ Mapping	function	scatters	addresses	through	physical	memory

§ Well-chosen	mappings	can	improve	locality
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VM	as	a	Tool	for	Memory	Management
¢ Simplifying	memory	allocation

§ Each	virtual	page	can	be	mapped	to	any	physical	page
§ A	virtual	page	can	be	stored	in	different	physical	pages	at	different	times

¢ Sharing	code	and	data	among	processes
§ Map	virtual	pages	to	the	same	physical	page	(here:	PP	6)
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Simplifying	Linking	and	Loading

¢ Linking
§ Each	program	has	similar	virtual	
address	space

§ Code,	data,	and	heap	always	start	
at	the	same	addresses.

¢ Loading	
§ execve allocates	virtual	pages	
for	.text	and	.data	sections	&	
creates	PTEs	marked	as	invalid

§ The	.text and	.data sections	
are	copied,	page	by	page,	on	
demand	by	the	virtual	memory	
system

Kernel	virtual	memory

Memory-mapped	region	for
shared	libraries

Run-time	heap
(created	by	malloc)

User	stack
(created	at	runtime)

Unused
0

%rsp
(stack	
pointer)

Memory
invisible	to
user	code

brk

0x400000

Read/write	segment
(.data,	.bss)

Read-only	segment
(.init,	.text,	.rodata)

Loaded	
from	
the	
executable	
file



Carnegie Mellon

25Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Today
¢ Address	spaces
¢ VM	as	a	tool	for	caching
¢ VM	as	a	tool	for	memory	management
¢ VM	as	a	tool	for	memory	protection
¢ Address	translation
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VM	as	a	Tool	for	Memory	Protection
¢ Extend	PTEs	with	permission	bits
¢ MMU	checks	these	bits	on	each	access
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PP	2Yes
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Quiz	Time!

Check	out:

https://canvas.cmu.edu/courses/1221
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Today
¢ Address	spaces
¢ VM	as	a	tool	for	caching
¢ VM	as	a	tool	for	memory	management
¢ VM	as	a	tool	for	memory	protection
¢ Address	translation
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VM	Address	Translation
¢ Virtual	Address	Space

§ V	=	{0,	1,	…,	N–1}

¢ Physical	Address	Space
§ P	=	{0,	1,	…,	M–1}

¢ Address	Translation
§ MAP:		V	® P		U		{Æ}
§ For	virtual	address	a:

§ MAP(a)		=		a’ if	data	at	virtual	address	a is	at	physical	address	a’ in	P
§ MAP(a)		=	Æ if	data	at	virtual	address	a is	not	in	physical	memory

– Either	invalid	or	stored	on	disk
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Summary	of	Address	Translation	Symbols
¢ Basic	Parameters

§ N	=	2n	:	Number	of	addresses	in	virtual	address	space
§ M	=	2m	:	Number	of	addresses	in	physical	address	space
§ P	=	2p	 :	Page	size	(bytes)

¢ Components	of	the	virtual	address	(VA)
§ VPO:	Virtual	page	offset	
§ VPN:	Virtual	page	number	

¢ Components	of	the	physical	address	(PA)
§ PPO:	Physical	page	offset	(same	as	VPO)
§ PPN: Physical	page	number
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Address	Translation	With	a	Page	Table

Virtual	page	number	(VPN) Virtual	page	offset	(VPO)

Physical	page	number	(PPN) Physical	page	offset	(PPO)

Virtual	address

Physical	address

Valid Physical	page	number	(PPN)

Page	table	
base	register	(PTBR)

(CR3	in	x86)

Page	table	

Physical	page	table	
address	for	the	current
process

Valid	bit	=	0:
Page	not	in	memory

(page	fault)

0p-1pn-1

0p-1pm-1

Valid	bit	=	1



Carnegie Mellon

32Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Address	Translation:	Page	Hit

1)	Processor	sends	virtual	address	to	MMU	

2-3)	MMU	fetches	PTE	from	page	table	in	memory

4)	MMU	sends	physical	address	to	cache/memory

5)	Cache/memory	sends	data	word	to	processor

MMU Cache/
MemoryPA

Data

CPU VA

CPU	Chip PTEA

PTE
1

2

3

4

5
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Address	Translation:	Page	Fault

1)	Processor	sends	virtual	address	to	MMU	
2-3)	MMU	fetches	PTE	from	page	table	in	memory
4)	Valid	bit	is	zero,	so	MMU	triggers	page	fault	exception
5)	Handler	identifies	victim	(and,	if	dirty,	pages	it	out	to	disk)
6)	Handler	pages	in	new	page	and	updates	PTE	in	memory
7)	Handler	returns	to	original	process,	restarting	faulting	instruction

MMU Cache/
Memory

CPU VA

CPU	Chip PTEA

PTE
1

2
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4

5

Disk

Page	fault	handler

Victim	page

New	page

Exception
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Integrating	VM	and	Cache

VACPU MMU

PTEA

PTE

PA

Data

Memory
PAPA

miss

PTEAPTEA
miss

PTEA	
hit

PA	
hit

Data

PTE

L1
cache

CPU	Chip

VA:	virtual	address,	PA:	physical	address,	PTE:	page	table	entry,	PTEA	=	PTE	address



Carnegie Mellon

35Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Speeding	up	Translation	with	a	TLB

¢ Page	table	entries	(PTEs)	are	cached	in	L1	like	any	other	
memory	word
§ PTEs	may	be	evicted	by	other	data	references
§ PTE	hit	still	requires	a	small	L1	delay

¢ Solution:	Translation	Lookaside Buffer (TLB)
§ Small	set-associative	hardware	cache	in	MMU
§ Maps	virtual	page	numbers	to		physical	page	numbers
§ Contains	complete	page	table	entries	for	small	number	of	pages
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Summary	of	Address	Translation	Symbols
¢ Basic	Parameters

§ N	=	2n	:	Number	of	addresses	in	virtual	address	space
§ M	=	2m	:	Number	of	addresses	in	physical	address	space
§ P	=	2p	 :	Page	size	(bytes)

¢ Components	of	the	virtual	address	(VA)
§ TLBI:	TLB	index
§ TLBT:	TLB	tag
§ VPO:	Virtual	page	offset	
§ VPN:	Virtual	page	number	

¢ Components	of	the	physical	address	(PA)
§ PPO:	Physical	page	offset	(same	as	VPO)
§ PPN: Physical	page	number
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Accessing	the	TLB
¢ MMU	uses	the	VPN	portion	of	the	virtual	address	to	

access	the	TLB:

TLB	tag	(TLBT) TLB	index	(TLBI)
0p-1pn-1

VPO

VPN

p+t-1p+t

PTEtagv

…
PTEtagvSet	0

PTEtagv PTEtagvSet	1

PTEtagv PTEtagvSet	T-1

T	=	2t sets

TLBI	selects	the	set

TLBT	matches	tag	
of	line	within	set
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TLB	Hit

MMU Cache/
Memory

CPU

CPU	Chip

VA
1

PA

4

Data
5

A	TLB	hit	eliminates	a	memory	access

TLB

2

VPN

PTE

3
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TLB	Miss

MMU Cache/
MemoryPA

Data

CPU VA

CPU	Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA
3

A	TLB	miss	incurs	an	additional	memory	access	(the	PTE)
Fortunately,	TLB	misses	are	rare.	Why?
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Multi-Level	Page	Tables
¢ Suppose:

§ 4KB	(212)	page	size,	48-bit	address	space,	8-byte	PTE	

¢ Problem:
§ Would	need	a	512	GB	page	table!

§ 248 *	2-12		*	23 =	239 bytes

¢ Common	solution:	Multi-level	page	table
¢ Example:	2-level	page	table

§ Level	1	table:	each	PTE	points	to	a	page	table	(always	
memory	resident)

§ Level	2	table:	each	PTE	points	to	a	page	
(paged	in	and	out	like	any	other	data)

Level	1
Table

...

Level	2
Tables

...
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A	Two-Level	Page	Table	Hierarchy
Level	1

page	table

...

Level	2
page	tables

VP	0

...

VP	1023
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...
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Virtual
memory

(1K	- 9)
null	PTEs	

PTE	0
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PTE	2	(null)

PTE	3	(null)

PTE	4	(null)

PTE	5	(null)

PTE	6	(null)

PTE	7	(null)

PTE	8

2K	allocated	VM	pages
for	code	and	data

6K	unallocated	VM	pages

1023	unallocated		pages

1	allocated	VM	page
for	the	stack

64	bit	addresses,	8KB	pages,	8-byte	PTEs
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Translating	with	a	k-level	Page	Table

Page	table	
base	register

(PTBR)

VPN	1
0p-1n-1

VPOVPN	2 ... VPN	k

PPN

0p-1m-1
PPOPPN

VIRTUAL	ADDRESS

PHYSICAL	ADDRESS

... ...

the	Level	1
page	table

a	Level	2
page	table

a	Level	k
page	table



Carnegie Mellon

43Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Summary

¢ Programmer’s	view	of	virtual	memory
§ Each	process	has	its	own	private	linear	address	space
§ Cannot	be	corrupted	by	other	processes

¢ System	view	of	virtual	memory
§ Uses	memory	efficiently	by	caching	virtual	memory	pages

§ Efficient	only	because	of	locality
§ Simplifies	memory	management	and	programming
§ Simplifies	protection	by	providing	a	convenient	interpositioning point	

to	check	permissions


