
Carnegie Mellon

1Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Carnegie Mellon

2Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Bits,	Bytes,	and	Integers	– Part	2

15-213:	Introduction	to	Computer	Systems
3rd Lecture,	Sept.	5,	2017

Today’s	Instructor:
Randy	Bryant

Carnegie Mellon

3Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Assignment	Announcements
¢ Lab	0	available	via	course	web	page	and	Autolab.

§ Due	Thurs.	Sept.	7,	11:59pm
§ No	grace	days
§ No	late	submissions
§ Just	do	it!	

¢ Lab	1	available	via	TPZ	and	Autolab	
§ Due	Thurs,	Sept.	14,	11:55pm
§ Read	instructions	carefully:	writeup,	bits.c,	tests.c

§ Quirky	software	infrastructure
§ Based	on	lectures	2,	3,	and	4	(CS:APP	Chapter	2)
§ After	today’s	lecture	you	will	know	everything	for	the	integer	

problems
§ Floating	point	covered	Thursday	Sept.	7

Carnegie Mellon

4Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Summary	From	Last	Lecture
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting

¢ Representations	in	memory,	pointers,	strings
¢ Summary

Carnegie Mellon

5Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Encoding	Integers

Two’s	Complement	Examples	(w	=	5)

B2T (X) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X) = xi ×2
i

i=0

w-1

å
Unsigned Two’s	Complement

Sign	Bit

10 =
-16 8 4 2 1

0 1 0 1 0

-10 =
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

Carnegie Mellon

6Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Unsigned	&	Signed	Numeric	Values
¢ Equivalence

§ Same	encodings	for	nonnegative	
values

¢ Uniqueness
§ Every	bit	pattern	represents	

unique	integer	value
§ Each	representable integer	has	

unique	bit	encoding

¢ Expression	containing	signed	
and	unsigned	int:
int is	cast	to	unsigned

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7

Carnegie Mellon

7Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Sign	Extension	and	Truncation
¢ Sign	Extension

¢ Truncation

Carnegie Mellon

8Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Today:	Bits,	Bytes,	and	Integers
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting

¢ Representations	in	memory,	pointers,	strings
¢ Summary

Carnegie Mellon

9Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Unsigned	Addition

¢ Standard	Addition	Function
§ Ignores	carry	output

¢ Implements	Modular	Arithmetic
s = UAddw(u ,	v) = u +	v mod	2w

• • •
• • •

u
v+

• • •u + v
• • •

True	Sum:	w+1	bits

Operands:	w bits

Discard	Carry:	w bits UAddw(u , v)

1110 1001
+ 1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

223
+ 213
446
190

unsigned char

Carnegie Mellon

10Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

4

8

12

16

20

24

28

32

Integer Addition

Visualizing	(Mathematical)	Integer	Addition

¢ Integer	Addition
§ 4-bit	integers	u,	v
§ Compute	true	sum	
Add4(u ,	v)

§ Values	increase	linearly	
with	u and	v

§ Forms	planar	surface

Add4(u ,	v)

u

v

Carnegie Mellon

11Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

0 2 4 6 8 10 12 14
0

2

4
6

8
10

12
14

0

2

4

6

8

10

12

14

16

Visualizing	Unsigned	Addition

¢ Wraps	Around
§ If	true	sum	≥	2w

§ At	most	once

0

2w

2w+1

UAdd4(u ,	v)

u

v

True	Sum

Modular	Sum

Overflow

Overflow

Carnegie Mellon

12Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Two’s	Complement	Addition

¢ TAdd and	UAdd have	Identical	Bit-Level	Behavior
§ Signed	vs.	unsigned	addition	in	C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v

§ Will	give s == t

• • •
• • •

u
v+

• • •u + v
• • •

True	Sum:	w+1	bits

Operands:	w bits

Discard	Carry:	w bits TAddw(u , v)

1110 1001
+ 1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

-23
+ -43
446
-66

Carnegie Mellon

13Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

TAdd	Overflow

¢ Functionality
§ True	sum	requires	w+1

bits
§ Drop	off	MSB
§ Treat	remaining	bits	as	

2’s	comp.	integer

–2w	–1

–2w

0

2w	–1–1

2w–1

True	Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver

Carnegie Mellon

14Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

-8 -6 -4 -2 0 2 4 6
-8

-6
-4

-2
0

2
4

6

-8

-6

-4

-2

0

2

4

6

8

Visualizing	2’s	Complement	Addition

¢ Values
§ 4-bit	two’s	comp.
§ Range	from	-8	to	+7

¢ Wraps	Around
§ If	sum	³ 2w–1

§ Becomes	negative
§ At	most	once

§ If	sum	<	–2w–1

§ Becomes	positive
§ At	most	once

TAdd4(u ,	v)

u

v
PosOver

NegOver

Carnegie Mellon

15Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Characterizing	TAdd

¢ Functionality
§ True	sum	requires	w+1 bits
§ Drop	off	MSB
§ Treat	remaining	bits	as	2’s	

comp.	integer

TAddw (u,v) =
u + v + 2w-1 u + v < TMinw
u + v TMinw £ u + v £ TMaxw
u + v - 2w-1 TMaxw < u + v

ì

í
ï

î ï

(NegOver)

(PosOver)

u

v

<	0 >	0

<	0

>	0

Negative	Overflow

Positive	Overflow

TAdd(u ,	v)

2w

2w

Carnegie Mellon

16Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Multiplication
¢ Goal:	Computing	Product	of	w-bit	numbers	x,	y

§ Either	signed	or	unsigned

¢ But,	exact	results	can	be	bigger	than	w bits
§ Unsigned:	up	to	2w bits

§ Result	range:	0	≤	x *	y ≤	(2w – 1)	2 =		22w – 2w+1 +	1
§ Two’s	complement	min	(negative):	Up	to	2w-1	bits

§ Result	range:	x *	y ≥	(–2w–1)*(2w–1–1)		=		–22w–2	+	2w–1

§ Two’s	complement	max	(positive):	Up	to	2w bits,	but	only	for	(TMinw)2

§ Result	range:	x *	y ≤	(–2w–1)	2 =		22w–2

¢ So,	maintaining	exact	results…
§ would	need	to	keep	expanding	word	size	with	each	product	computed
§ is	done	in	software,	if	needed

§ e.g.,	by	“arbitrary	precision”	arithmetic	packages

Carnegie Mellon

17Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Unsigned	Multiplication	in	C

¢ Standard	Multiplication	Function
§ Ignores	high	order	w bits

¢ Implements	Modular	Arithmetic
UMultw(u ,	v)= u ·	v mod	2w

• • •
• • •

u
v*

• • •u · v
• • •

True	Product:	2*w bits

Operands:	w bits

Discard	w bits:	w bits
UMultw(u , v)

• • •

1110 1001
* 1101 0101
1100 0001 1101 1101

1101 1101

E9
* D5
C1DD
DD

223
* 213
47499
221

Carnegie Mellon

18Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Signed	Multiplication	in	C

¢ Standard	Multiplication	Function
§ Ignores	high	order	w bits
§ Some	of	which	are	different	for	signed	

vs.	unsigned	multiplication
§ Lower	bits	are	the	same

• • •
• • •

u
v*

• • •u · v
• • •

True	Product:	2*w bits

Operands:	w bits

Discard	w bits:	w bits
TMultw(u , v)

• • •

-23
* -43

989
-35

1110 1001
* 1101 0101
0000 0011 1101 1101

1101 1101

E9
* D5
03DD
DD

Carnegie Mellon

19Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Power-of-2	Multiply	with	Shift
¢ Operation

§ u << k gives	u * 2k

§ Both	signed	and	unsigned

¢ Examples
§ u << 3 == u * 8
§ (u << 5) – (u << 3)== u * 24

§ Most	machines	shift	and	add	faster	than	multiply
§ Compiler	generates	this	code	automatically

• • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue	Product:	w+k bits

Operands:	w bits

Discard	k	 bits:	w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••

Carnegie Mellon

20Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Unsigned	Power-of-2	Divide	with	Shift
¢ Quotient	of	Unsigned	by	Power	of	2

§ u >> k gives		ë u / 2k	û
§ Uses	logical	shift

 Division Computed Hex Binary
x 15213 15213 3B 6D 00111011 01101101
x >> 1 7606.5 7606 1D B6 00011101 10110110
x >> 4 950.8125 950 03 B6 00000011 10110110
x >> 8 59.4257813 59 00 3B 00000000 00111011

0 0 1 0 0 0•••

u
2k/

u / 2kDivision:	

Operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••Result:

.

Binary	Point

0

0 0 0•••0

Carnegie Mellon

21Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Signed	Power-of-2	Divide	with	Shift
¢ Quotient	of	Signed	by	Power	of	2

§ x >> k gives		ë x / 2k	û
§ Uses	arithmetic	shift
§ Rounds	wrong	direction	when	u < 0

0 0 1 0 0 0•••
x
2k/

x / 2kDivision:	

Operands:
•••

k
••• •••

•••0 ••• •••
RoundDown(x / 2k) •••Result:

.

Binary	Point

0 •••

 Division Computed Hex Binary
y -15213 -15213 C4 93 11000100 10010011
y >> 1 -7606.5 -7607 E2 49 11100010 01001001
y >> 4 -950.8125 -951 FC 49 11111100 01001001
y >> 8 -59.4257813 -60 FF C4 11111111 11000100

Carnegie Mellon

22Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Correct	Power-of-2	Divide
¢ Quotient	of	Negative	Number	by	Power	of	2

§ Want		é x / 2k	ù (Round	Toward	0)
§ Compute	as		ë (x+2k-1)/ 2k	û

§ In	C:	(x + (1<<k)-1) >> k
§ Biases	dividend	toward	0

Case	1:	No	rounding

Divisor:	

Dividend:

0 0 1 0 0 0•••

u

2k/
é u / 2k ù

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary	Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing	has	no	effect

Carnegie Mellon

23Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Correct	Power-of-2	Divide	(Cont.)

Divisor:	

Dividend:

Case	2:	Rounding

0 0 1 0 0 0•••

x

2k/
é x / 2k ù

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary	Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing	adds	1	to	final	result

•••

Incremented	by	1

Incremented	by	1

Carnegie Mellon

24Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Negation:	Complement	&	Increment
¢ Negate	through	complement	and	increase

~x + 1 == -x

¢ Example
§ Observation:	~x + x == 1111…111 == -1

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
~x -15214 C4 92 11000100 10010010
~x+1 -15213 C4 93 11000100 10010011
y -15213 C4 93 11000100 10010011

x	=	15213

Carnegie Mellon

25Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Complement	&	Increment	Examples

 Decimal Hex Binary
x -32768 80 00 10000000 00000000
~x 32767 7F FF 01111111 11111111
~x+1 -32768 80 00 10000000 00000000

x	=	TMin

 Decimal Hex Binary
0 0 00 00 00000000 00000000
~0 -1 FF FF 11111111 11111111
~0+1 0 00 00 00000000 00000000

x	=	0

Canonical	counter	example

Carnegie Mellon

26Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Today:	Bits,	Bytes,	and	Integers
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting
§ Summary

¢ Representations	in	memory,	pointers,	strings

Carnegie Mellon

27Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Arithmetic:	Basic	Rules
¢ Addition:

§ Unsigned/signed:	Normal	addition	followed	by	truncate,
same	operation	on	bit	level

§ Unsigned:	addition	mod	2w

§ Mathematical	addition	+	possible	subtraction	of	2w

§ Signed:	modified	addition	mod	2w	(result	in	proper	range)
§ Mathematical	addition	+	possible	addition	or	subtraction	of	2w

¢ Multiplication:
§ Unsigned/signed:	Normal	multiplication	followed	by	truncate,	

same	operation	on	bit	level
§ Unsigned:	multiplication	mod	2w

§ Signed:	modified	multiplication	mod	2w	(result	in	proper	range)

Carnegie Mellon

28Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Why	Should	I	Use	Unsigned?
¢ Don’t use	without	understanding	implications

§ Easy	to	make	mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

§ Can	be	very	subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .

Carnegie Mellon

29Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Counting	Down	with	Unsigned
¢ Proper	way	to	use	unsigned	as	loop	index

unsigned i;
for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];

¢ See	Robert	Seacord,	Secure	Coding	in	C	and	C++
§ C	Standard	guarantees	that	unsigned	addition	will	behave	like	modular	

arithmetic
§ 0	– 1	à UMax

¢ Even	better
size_t i;
for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];
§ Data	type	size_t defined	as	unsigned	value	with	length	=	word	size
§ Code	will	work	even	if cnt =	UMax
§ What	if	cnt is	signed	and	<	0?

Carnegie Mellon

30Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Why	Should	I	Use	Unsigned?	(cont.)
¢ Do Use	When	Performing	Modular	Arithmetic

§ Multiprecision arithmetic

¢ Do Use	When	Using	Bits	to	Represent	Sets
§ Logical	right	shift,	no	sign	extension

¢ Do Use	In	System	Programming
§ Bit	masks,	device	commands,…

Carnegie Mellon

31Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Today:	Bits,	Bytes,	and	Integers
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting
§ Summary

¢ Representations	in	memory,	pointers,	strings

Carnegie Mellon

32Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Byte-Oriented	Memory	Organization

¢ Programs refer	to data	by	address
§ Conceptually,	envision	it	as	a	very	large	array	of	bytes

§ In	reality,	it’s	not,	but	can	think	of	it	that	way
§ An	address	is	like	an	index	into	that	array

§ and,	a	pointer	variable	stores	an	address

¢ Note:	system	provides private	address	spaces	to	each	“process”
§ Think	of	a	process	as	a	program	being	executed
§ So,	a	program	can	clobber	its	own	data,	but	not	that	of	others

• • •

Carnegie Mellon

33Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Machine	Words
¢ Any	given	computer	has	a	“Word	Size”
§ Nominal	size	of	integer-valued	data

§ and	of	addresses

§ Until	recently,	most	machines	used	32	bits	(4	bytes) as	word	size
§ Limits	addresses	to	4GB	(232 bytes)

§ Increasingly,	machines	have	64-bit	word	size
§ Potentially,	could	have	18	EB	(exabytes)	of	addressable	memory
§ That’s	18.4	X	1018

§ Machines	still	support	multiple	data	formats
§ Fractions	or	multiples	of	word	size
§ Always	integral	number	of	bytes

Carnegie Mellon

34Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Word-Oriented	Memory	Organization
¢ Addresses	Specify	Byte	

Locations
§ Address	of	first	byte	in	word
§ Addresses	of	successive	words	differ	

by	4	(32-bit)	or	8	(64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Carnegie Mellon

35Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Example	Data	Representations

C	Data	Type Typical	32-bit Typical	64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Carnegie Mellon

36Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Byte	Ordering
¢ So,	how	are	the	bytes	within	a	multi-byte	word ordered	in	

memory?
¢ Conventions
§ Big	Endian:	Sun	(Oracle	SPARC),	PPC	Mac,	Internet

§ Least	significant	byte	has	highest	address
§ Little	Endian:	x86,	ARM	processors	running	Android,	iOS,	and	Linux

§ Least	significant	byte	has	lowest	address

Carnegie Mellon

37Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Byte	Ordering	Example

¢ Example
§ Variable	x has	4-byte value	of	0x01234567
§ Address	given	by	&x is	0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01

Carnegie Mellon

38Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Representing	Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3 B 6 D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun
6D
3B
00
00

IA32

In
cr
ea
sin

g	
ad

dr
es
se
s

Carnegie Mellon

39Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Examining	Data	Representations
¢ Code	to	Print	Byte	Representation	of	Data
§ Casting	pointer	to	unsigned	char	* allows	treatment	as	a	byte	array

Printf directives:
%p: Print	pointer
%x: Print	Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
size_t i;
for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);
printf("\n");

}

Carnegie Mellon

40Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

show_bytes Execution	Example
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00

Carnegie Mellon

41Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Representing	Pointers

Different	compilers	&	machines	assign	different	locations	to	objects

Even	get	different	results	each	time	run	program

int B = -15213;
int *P = &B;

x86-64Sun IA32
EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00

Carnegie Mellon

42Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

char S[6] = "18213";

Representing Strings

¢ Strings	in	C
§ Represented	by	array	of	characters
§ Each	character	encoded	in	ASCII	format

§ Standard	7-bit	encoding	of	character	set
§ Character	“0”	has	code	0x30

– Digit	i has	code	0x30+i
§ String	should	be	null-terminated

§ Final	character	=	0

¢ Compatibility
§ Byte	ordering	not	an	issue

IA32 Sun
31

38

32

31

33

00

31

38

32

31

33

00

Carnegie Mellon

43Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Address Instruction Code Assembly Rendition
8048365: 5b pop %ebx
8048366: 81 c3 ab 12 00 00 add $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl $0x0,0x28(%ebx)

Reading	Byte-Reversed	Listings
¢ Disassembly
§ Text	representation	of	binary	machine	code
§ Generated	by	program	that	reads	the	machine	code

¢ Example	Fragment

¢ Deciphering	Numbers
§ Value: 0x12ab

§ Pad	to	32	bits: 0x000012ab

§ Split	into	bytes: 00 00 12 ab

§ Reverse: ab 12 00 00

Carnegie Mellon

44Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Integer	C	Puzzles

x < 0 Þ ((x*2) < 0)
ux >= 0
x & 7 == 7 Þ (x<<30) < 0
ux > -1
x > y Þ -x < -y
x * x >= 0
x > 0 && y > 0 Þ x + y > 0
x >= 0 Þ -x <= 0
x <= 0 Þ -x >= 0
(x|-x)>>31 == -1
ux >> 3 == ux/8
x >> 3 == x/8
x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization

Carnegie Mellon

45Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Summary
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting

¢ Representations	in	memory,	pointers,	strings
¢ Summary

