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Bits,	Bytes,	and	Integers	– Part	2

15-213:	Introduction	to	Computer	Systems
3rd Lecture,	Sept.	5,	2017

Today’s	Instructor:
Randy	Bryant
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Assignment	Announcements
¢ Lab	0	available	via	course	web	page	and	Autolab.

§ Due	Thurs.	Sept.	7,	11:59pm
§ No	grace	days
§ No	late	submissions
§ Just	do	it!	

¢ Lab	1	available	via	TPZ	and	Autolab	
§ Due	Thurs,	Sept.	14,	11:55pm
§ Read	instructions	carefully:	writeup,	bits.c,	tests.c

§ Quirky	software	infrastructure
§ Based	on	lectures	2,	3,	and	4	(CS:APP	Chapter	2)
§ After	today’s	lecture	you	will	know	everything	for	the	integer	

problems
§ Floating	point	covered	Thursday	Sept.	7
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Summary	From	Last	Lecture
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting

¢ Representations	in	memory,	pointers,	strings
¢ Summary
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Encoding	Integers

Two’s	Complement	Examples	(w	=	5)

B2T (X ) = -xw-1 ×2
w-1 + xi ×2

i

i=0

w-2

åB2U(X ) = xi ×2
i

i=0

w-1

å
Unsigned Two’s	Complement

Sign	Bit

10 = 
-16 8 4 2 1

0 1 0 1 0

-10 = 
-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10
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Unsigned	&	Signed	Numeric	Values
¢ Equivalence

§ Same	encodings	for	nonnegative	
values

¢ Uniqueness
§ Every	bit	pattern	represents	

unique	integer	value
§ Each	representable integer	has	

unique	bit	encoding

¢ Expression	containing	signed	
and	unsigned	int:
int is	cast	to	unsigned

X B2T(X)B2U(X)
0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7

–88
–79
–610
–511
–412
–313
–214
–115

1000
1001
1010
1011
1100
1101
1110
1111

0
1
2
3
4
5
6
7
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Sign	Extension	and	Truncation
¢ Sign	Extension

¢ Truncation
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Today:	Bits,	Bytes,	and	Integers
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting

¢ Representations	in	memory,	pointers,	strings
¢ Summary
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Unsigned	Addition

¢ Standard	Addition	Function
§ Ignores	carry	output

¢ Implements	Modular	Arithmetic
s = UAddw(u ,	v) = u +	v mod	2w

• • •
• • •

u
v+

• • •u + v
• • •

True	Sum:	w+1	bits

Operands:	w bits

Discard	Carry:	w bits UAddw(u , v)

1110 1001
+  1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

223
+ 213
446
190

unsigned char
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Integer Addition

Visualizing	(Mathematical)	Integer	Addition

¢ Integer	Addition
§ 4-bit	integers	u,	v
§ Compute	true	sum	
Add4(u ,	v)

§ Values	increase	linearly	
with	u and	v

§ Forms	planar	surface

Add4(u ,	v)

u

v
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Visualizing	Unsigned	Addition

¢ Wraps	Around
§ If	true	sum	≥	2w

§ At	most	once

0

2w

2w+1

UAdd4(u ,	v)

u

v

True	Sum

Modular	Sum

Overflow

Overflow
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Two’s	Complement	Addition

¢ TAdd and	UAdd have	Identical	Bit-Level	Behavior
§ Signed	vs.	unsigned	addition	in	C:

int s, t, u, v;
s = (int) ((unsigned) u + (unsigned) v);
t = u + v

§ Will	give s == t

• • •
• • •

u
v+

• • •u + v
• • •

True	Sum:	w+1	bits

Operands:	w bits

Discard	Carry:	w bits TAddw(u , v)

1110 1001
+  1101 0101
1 1011 1110
1011 1110

E9
+ D5
1BE
BE

-23
+ -43
446
-66
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TAdd	Overflow

¢ Functionality
§ True	sum	requires	w+1

bits
§ Drop	off	MSB
§ Treat	remaining	bits	as	

2’s	comp.	integer

–2w	–1

–2w

0

2w	–1–1

2w–1

True	Sum

TAdd Result

1 000…0

1 011…1

0 000…0

0 100…0

0 111…1

100…0

000…0

011…1

PosOver

NegOver
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Visualizing	2’s	Complement	Addition

¢ Values
§ 4-bit	two’s	comp.
§ Range	from	-8	to	+7

¢ Wraps	Around
§ If	sum	³ 2w–1

§ Becomes	negative
§ At	most	once

§ If	sum	<	–2w–1

§ Becomes	positive
§ At	most	once

TAdd4(u ,	v)

u

v
PosOver

NegOver
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Characterizing	TAdd

¢ Functionality
§ True	sum	requires	w+1 bits
§ Drop	off	MSB
§ Treat	remaining	bits	as	2’s	

comp.	integer

TAddw (u,v) =
u + v + 2w-1 u + v < TMinw
u + v TMinw £ u + v £ TMaxw
u + v - 2w-1 TMaxw < u + v

ì 

í 
ï 

î ï 

(NegOver)

(PosOver)

u

v

<	0 >	0

<	0

>	0

Negative	Overflow

Positive	Overflow

TAdd(u ,	v)

2w

2w
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Multiplication
¢ Goal:	Computing	Product	of	w-bit	numbers	x,	y

§ Either	signed	or	unsigned

¢ But,	exact	results	can	be	bigger	than	w bits
§ Unsigned:	up	to	2w bits

§ Result	range:	0	≤	x *	y ≤	(2w – 1)	2 =		22w – 2w+1 +	1
§ Two’s	complement	min	(negative):	Up	to	2w-1	bits

§ Result	range:	x *	y ≥	(–2w–1)*(2w–1–1)		=		–22w–2	+	2w–1

§ Two’s	complement	max	(positive):	Up	to	2w bits,	but	only	for	(TMinw)2

§ Result	range:	x *	y ≤	(–2w–1)	2 =		22w–2

¢ So,	maintaining	exact	results…
§ would	need	to	keep	expanding	word	size	with	each	product	computed
§ is	done	in	software,	if	needed

§ e.g.,	by	“arbitrary	precision”	arithmetic	packages
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Unsigned	Multiplication	in	C

¢ Standard	Multiplication	Function
§ Ignores	high	order	w bits

¢ Implements	Modular	Arithmetic
UMultw(u ,	v)= u ·	v mod	2w

• • •
• • •

u
v*

• • •u · v
• • •

True	Product:	2*w bits

Operands:	w bits

Discard	w bits:	w bits
UMultw(u , v)

• • •

1110 1001
*          1101 0101
1100 0001 1101 1101

1101 1101

E9
* D5
C1DD
DD

223
* 213
47499
221
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Signed	Multiplication	in	C

¢ Standard	Multiplication	Function
§ Ignores	high	order	w bits
§ Some	of	which	are	different	for	signed	

vs.	unsigned	multiplication
§ Lower	bits	are	the	same

• • •
• • •

u
v*

• • •u · v
• • •

True	Product:	2*w bits

Operands:	w bits

Discard	w bits:	w bits
TMultw(u , v)

• • •

-23
* -43

989
-35

1110 1001
*          1101 0101
0000 0011 1101 1101

1101 1101

E9
* D5
03DD
DD
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Power-of-2	Multiply	with	Shift
¢ Operation

§ u << k gives	u * 2k

§ Both	signed	and	unsigned

¢ Examples
§ u << 3 == u * 8
§ (u << 5) – (u << 3)== u * 24

§ Most	machines	shift	and	add	faster	than	multiply
§ Compiler	generates	this	code	automatically

• • •

0 0 1 0 0 0•••

u
2k*

u · 2kTrue	Product:	w+k bits

Operands:	w bits

Discard	k	 bits:	w bits UMultw(u , 2k)

•••

k

• • • 0 0 0•••

TMultw(u , 2k)
0 0 0••••••
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Unsigned	Power-of-2	Divide	with	Shift
¢ Quotient	of	Unsigned	by	Power	of	2

§ u >> k gives		ë u / 2k	û
§ Uses	logical	shift

 Division Computed Hex Binary 
x 15213 15213 3B 6D 00111011 01101101 
x >> 1 7606.5 7606 1D B6 00011101 10110110 
x >> 4 950.8125 950 03 B6 00000011 10110110 
x >> 8 59.4257813 59 00 3B 00000000 00111011 
 

0 0 1 0 0 0•••

u
2k/

u / 2kDivision:	

Operands:
•••

k
••• •••

•••0 0 0••• •••

ë u / 2k û •••Result:

.

Binary	Point

0

0 0 0•••0
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Signed	Power-of-2	Divide	with	Shift
¢ Quotient	of	Signed	by	Power	of	2

§ x >> k gives		ë x / 2k	û
§ Uses	arithmetic	shift
§ Rounds	wrong	direction	when	u < 0

0 0 1 0 0 0•••
x
2k/

x / 2kDivision:	

Operands:
•••

k
••• •••

•••0 ••• •••
RoundDown(x / 2k) •••Result:

.

Binary	Point

0 •••

 Division Computed Hex Binary 
y -15213 -15213 C4 93 11000100 10010011 
y >> 1 -7606.5 -7607 E2 49  11100010 01001001 
y >> 4 -950.8125 -951 FC 49 11111100 01001001 
y >> 8 -59.4257813 -60 FF C4 11111111 11000100 
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Correct	Power-of-2	Divide
¢ Quotient	of	Negative	Number	by	Power	of	2

§ Want		é x / 2k	ù (Round	Toward	0)
§ Compute	as		ë (x+2k-1)/ 2k	û

§ In	C:	(x + (1<<k)-1) >> k
§ Biases	dividend	toward	0

Case	1:	No	rounding

Divisor:	

Dividend:

0 0 1 0 0 0•••

u

2k/
é u / 2k ù

•••

k
1 ••• 0 0 0•••

1 •••0 1 1••• .

Binary	Point

1

0 0 0 1 1 1•••+2k –1 •••

1 1 1•••

1 ••• 1 1 1•••

Biasing	has	no	effect
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Correct	Power-of-2	Divide	(Cont.)

Divisor:	

Dividend:

Case	2:	Rounding

0 0 1 0 0 0•••

x

2k/
é x / 2k ù

•••

k
1 ••• •••

1 •••0 1 1••• .

Binary	Point

1

0 0 0 1 1 1•••+2k –1 •••

1 ••• •••

Biasing	adds	1	to	final	result

•••

Incremented	by	1

Incremented	by	1
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Negation:	Complement	&	Increment
¢ Negate	through	complement	and	increase

~x + 1 == -x

¢ Example
§ Observation:	~x + x == 1111…111 == -1

1 0 0 1 0 11 1x

0 1 1 0 1 00 0~x+

1 1 1 1 1 11 1-1

 Decimal Hex Binary 
x 15213 3B 6D 00111011 01101101 
~x -15214 C4 92 11000100 10010010 
~x+1 -15213 C4 93 11000100 10010011 
y -15213 C4 93 11000100 10010011 
 

x	=	15213
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Complement	&	Increment	Examples

 Decimal Hex Binary 
x -32768 80 00 10000000 00000000 
~x 32767 7F FF 01111111 11111111 
~x+1 -32768 80 00 10000000 00000000 
 

x	=	TMin

 Decimal Hex Binary 
0 0 00 00 00000000 00000000 
~0 -1 FF FF 11111111 11111111 
~0+1 0 00 00 00000000 00000000 
 

x	=	0

Canonical	counter	example
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Today:	Bits,	Bytes,	and	Integers
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting
§ Summary

¢ Representations	in	memory,	pointers,	strings
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Arithmetic:	Basic	Rules
¢ Addition:

§ Unsigned/signed:	Normal	addition	followed	by	truncate,
same	operation	on	bit	level

§ Unsigned:	addition	mod	2w

§ Mathematical	addition	+	possible	subtraction	of	2w

§ Signed:	modified	addition	mod	2w	(result	in	proper	range)
§ Mathematical	addition	+	possible	addition	or	subtraction	of	2w

¢ Multiplication:
§ Unsigned/signed:	Normal	multiplication	followed	by	truncate,	

same	operation	on	bit	level
§ Unsigned:	multiplication	mod	2w

§ Signed:	modified	multiplication	mod	2w	(result	in	proper	range)
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Why	Should	I	Use	Unsigned?
¢ Don’t use	without	understanding	implications

§ Easy	to	make	mistakes
unsigned i;
for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

§ Can	be	very	subtle
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .
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Counting	Down	with	Unsigned
¢ Proper	way	to	use	unsigned	as	loop	index

unsigned i;
for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];

¢ See	Robert	Seacord,	Secure	Coding	in	C	and	C++
§ C	Standard	guarantees	that	unsigned	addition	will	behave	like	modular	

arithmetic
§ 0	– 1	à UMax

¢ Even	better
size_t i;
for (i = cnt-2; i < cnt; i--)

a[i] += a[i+1];
§ Data	type	size_t defined	as	unsigned	value	with	length	=	word	size
§ Code	will	work	even	if cnt =	UMax
§ What	if	cnt is	signed	and	<	0?
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Why	Should	I	Use	Unsigned?	(cont.)
¢ Do Use	When	Performing	Modular	Arithmetic

§ Multiprecision arithmetic

¢ Do Use	When	Using	Bits	to	Represent	Sets
§ Logical	right	shift,	no	sign	extension

¢ Do Use	In	System	Programming
§ Bit	masks,	device	commands,…
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Today:	Bits,	Bytes,	and	Integers
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting
§ Summary

¢ Representations	in	memory,	pointers,	strings
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Byte-Oriented	Memory	Organization

¢ Programs refer	to data	by	address
§ Conceptually,	envision	it	as	a	very	large	array	of	bytes

§ In	reality,	it’s	not,	but	can	think	of	it	that	way
§ An	address	is	like	an	index	into	that	array

§ and,	a	pointer	variable	stores	an	address

¢ Note:	system	provides private	address	spaces	to	each	“process”
§ Think	of	a	process	as	a	program	being	executed
§ So,	a	program	can	clobber	its	own	data,	but	not	that	of	others

• • •
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Machine	Words
¢ Any	given	computer	has	a	“Word	Size”
§ Nominal	size	of	integer-valued	data

§ and	of	addresses

§ Until	recently,	most	machines	used	32	bits	(4	bytes) as	word	size
§ Limits	addresses	to	4GB	(232 bytes)

§ Increasingly,	machines	have	64-bit	word	size
§ Potentially,	could	have	18	EB	(exabytes)	of	addressable	memory
§ That’s	18.4	X	1018

§ Machines	still	support	multiple	data	formats
§ Fractions	or	multiples	of	word	size
§ Always	integral	number	of	bytes
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Word-Oriented	Memory	Organization
¢ Addresses	Specify	Byte	

Locations
§ Address	of	first	byte	in	word
§ Addresses	of	successive	words	differ	

by	4	(32-bit)	or	8	(64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Words Bytes Addr.

0012
0013
0014
0015

64-bit
Words

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

0000

0004

0008

0012

0000

0008
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Example	Data	Representations

C	Data	Type Typical	32-bit Typical	64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8
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Byte	Ordering
¢ So,	how	are	the	bytes	within	a	multi-byte	word ordered	in	

memory?
¢ Conventions
§ Big	Endian:	Sun	(Oracle	SPARC),	PPC	Mac,	Internet

§ Least	significant	byte	has	highest	address
§ Little	Endian:	x86,	ARM	processors	running	Android,	iOS,	and	Linux

§ Least	significant	byte	has	lowest	address
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Byte	Ordering	Example

¢ Example
§ Variable	x has	4-byte value	of	0x01234567
§ Address	given	by	&x is	0x100

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

01 23 45 67

67 45 23 01
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Representing	Integers
Decimal: 15213

Binary: 0011 1011 0110 1101

Hex: 3    B    6    D

6D
3B
00
00

IA32, x86-64

3B
6D

00
00

Sun

int A = 15213;

93
C4
FF
FF

IA32, x86-64

C4
93

FF
FF

Sun

Two’s complement representation

int B = -15213;

long int C = 15213;

00
00
00
00

6D
3B
00
00

x86-64

3B
6D

00
00

Sun
6D
3B
00
00

IA32

In
cr
ea
sin

g	
ad

dr
es
se
s
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Examining	Data	Representations
¢ Code	to	Print	Byte	Representation	of	Data
§ Casting	pointer	to	unsigned	char	* allows	treatment	as	a	byte	array

Printf directives:
%p: Print	pointer
%x: Print	Hexadecimal

typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
size_t i;
for (i = 0; i < len; i++)

printf(”%p\t0x%.2x\n",start+i, start[i]);
printf("\n");

}
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show_bytes Execution	Example
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));

Result (Linux x86-64):
int a = 15213;
0x7fffb7f71dbc 6d
0x7fffb7f71dbd 3b
0x7fffb7f71dbe 00
0x7fffb7f71dbf 00
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Representing	Pointers

Different	compilers	&	machines	assign	different	locations	to	objects

Even	get	different	results	each	time	run	program

int B = -15213;
int *P = &B;

x86-64Sun IA32
EF

FF

FB

2C

AC

28

F5

FF

3C

1B

FE

82

FD

7F

00

00
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char S[6] = "18213";

Representing Strings

¢ Strings	in	C
§ Represented	by	array	of	characters
§ Each	character	encoded	in	ASCII	format

§ Standard	7-bit	encoding	of	character	set
§ Character	“0”	has	code	0x30

– Digit	i has	code	0x30+i
§ String	should	be	null-terminated

§ Final	character	=	0

¢ Compatibility
§ Byte	ordering	not	an	issue

IA32 Sun
31

38

32

31

33

00

31

38

32

31

33

00
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Address Instruction Code Assembly Rendition
8048365: 5b                   pop    %ebx
8048366: 81 c3 ab 12 00 00    add    $0x12ab,%ebx
804836c: 83 bb 28 00 00 00 00 cmpl   $0x0,0x28(%ebx)

Reading	Byte-Reversed	Listings
¢ Disassembly
§ Text	representation	of	binary	machine	code
§ Generated	by	program	that	reads	the	machine	code

¢ Example	Fragment

¢ Deciphering	Numbers
§ Value: 0x12ab

§ Pad	to	32	bits: 0x000012ab

§ Split	into	bytes: 00 00 12 ab

§ Reverse: ab 12 00 00
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Integer	C	Puzzles

x < 0 Þ ((x*2) < 0)
ux >= 0
x & 7 == 7 Þ (x<<30) < 0
ux > -1
x > y Þ -x < -y
x * x >= 0
x > 0 && y > 0 Þ x + y > 0
x >= 0 Þ -x <= 0
x <= 0 Þ -x >= 0
(x|-x)>>31 == -1
ux >> 3 == ux/8
x >> 3 == x/8
x & (x-1) != 0

int x = foo();

int y = bar();

unsigned ux = x;

unsigned uy = y;

Initialization
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Summary
¢ Representing	information	as	bits
¢ Bit-level	manipulations
¢ Integers

§ Representation:	unsigned	and	signed
§ Conversion,	casting
§ Expanding,	truncating
§ Addition,	negation,	multiplication,	shifting

¢ Representations	in	memory,	pointers,	strings
¢ Summary


