

Bits, Bytes and Integers – Part 1

15-213/18-213/15-513: Introduction to Computer Systems 2nd Lecture, Aug. 31, 2017

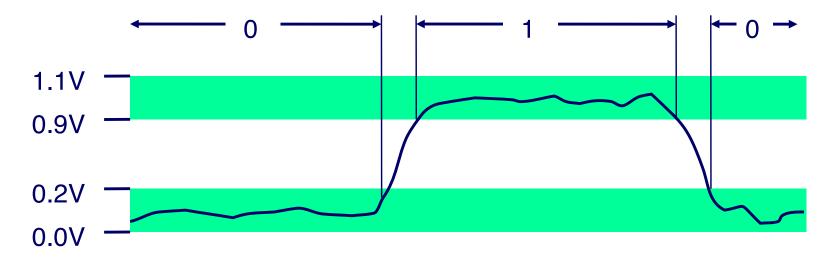
Today's Instructor:

Randy Bryant

Announcements

- Recitations are on Mondays, but next Monday (9/4) is Labor Day, so recitations are cancelled
- Linux Boot Camp Monday evening 7pm, Rashid Auditorium
- Lab 0 is now available via course web page and <u>Autolab</u>.
 - Due Thu Sept. 7, 11:59pm
 - No grace days
 - No late submissions
 - Just do it!

Waitlist questions


- 15-213: Mary Widom (<u>marwidom@cs.cmu.edu</u>)
- 18-213: ECE Academic services
 - ece-asc@andrew.cmu.edu
- 15-513: Mary Widom (<u>marwidom@cs.cmu.edu</u>)
- Please don't contact the instructors with waitlist questions.

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Everything is bits

- Each bit is 0 or 1
- By encoding/interpreting sets of bits in various ways
 - Computers determine what to do (instructions)
 - ... and represent and manipulate numbers, sets, strings, etc...
- **Why bits? Electronic Implementation**
 - Easy to store with bistable elements
 - Reliably transmitted on noisy and inaccurate wires

For example, can count in binary

Base 2 Number Representation

- Represent 15213₁₀ as 11101101101101₂
- Represent 1.20₁₀ as 1.0011001100110011[0011]...₂
- Represent 1.5213 X 10⁴ as 1.1101101101101₂ X 2¹³

Encoding Byte Values

- Byte = 8 bits
 - Binary 000000002 to 111111112
 - Decimal: 0₁₀ to 255₁₀
 - Hexadecimal 00₁₆ to FF₁₆
 - Base 16 number representation
 - Use characters '0' to '9' and 'A' to 'F'
 - Write FA1D37B₁₆ in C as
 - 0xFA1D37B
 - 0xfa1d37b

He	t per	Einary
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
0 1 2 3 4 5 6 7 8	1 2 3 4 5 6 7	0101
6	6	0110
7	7	0111
8	8	1000
	9	1001
A	10	1010
B C D	11	1011
C	12	1100
	13	1101
E	14	1110
F	15	1111

15213:	0011	1011	0110	1101
	3	В	6	D

Example Data Representations

C Data Type	Typical 32-bit	Typical 64-bit	x86-64
char	1	1	1
short	2	2	2
int	4	4	4
long	4	8	8
float	4	4	4
double	8	8	8
pointer	4	8	8

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic
 - Encode "True" as 1 and "False" as 0

And

Or

■ A&B = 1 when both A=1 and B=1

Not

Exclusive-Or (Xor)

~A = 1 when A=0

■ A^B = 1 when either A=1 or B=1, but not both

~	
0	1
1	0

٨	0	1
0	0	1
1	1	0

General Boolean Algebras

- Operate on Bit Vectors
 - Operations applied bitwise

All of the Properties of Boolean Algebra Apply

Example: Representing & Manipulating Sets

Representation

- Width w bit vector represents subsets of {0, ..., w−1}
- $a_i = 1 \text{ if } j \in A$
 - 01101001 { 0, 3, 5, 6 }
 - **76543210**
 - 01010101 { 0, 2, 4, 6 }
 - **76543210**

Operations

&	Intersection	01000001	{ 0, 6 }
•	Union	01111101	{ 0, 2, 3, 4, 5, 6 }
^	Symmetric difference	00111100	{ 2, 3, 4, 5 }
~	Complement	10101010	{ 1, 3, 5, 7 }

1

Bit-Level Operations in C

- Operations &, |, ~, ^ Available in C
 - Apply to any "integral" data type
 - long, int, short, char, unsigned
 - View arguments as bit vectors
 - Arguments applied bit-wise
- Examples (Char data type)
 - $\sim 0x41 \rightarrow$
 - $\sim 0 \times 00 \rightarrow$
 - $0x69 \& 0x55 \rightarrow$
 - $0x69 \mid 0x55 \rightarrow$

	4	inal ary
0 1 2 3 4 5 6 7 8	b Dec	Siman Binary
0	0	0000
1	0 1 2 3 4 5 6 7	0001
2	2	0010
თ	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
Α	10	1010
В	11	1011
U	12 13	1100
B C D E	13	1101
E	14	1110
F	15	1111

Bit-Level Operations in C

■ Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
 - long, int, short, char, unsigned
- View arguments as bit vectors
- Arguments applied bit-wise

Examples (Char data type)

- $\sim 0x41 \rightarrow 0xBE$
 - $\sim 0100 \ 0001_2 \rightarrow 1011 \ 1110_2$
- $\sim 0 \times 00 \rightarrow 0 \times FF$
- $0x69 \& 0x55 \rightarrow 0x41$
 - $0110 \ 1001_2 \ \& \ 0101 \ 0101_2 \ \to \ 0100 \ 0001_2$
- $0x69 \mid 0x55 \rightarrow 0x7D$
 - $0110 \ 1001_2 \ | \ 0101 \ 0101_2 \ \rightarrow \ 0111 \ 1101_2$

Hex Decimanary

0	0	0000
1	1	0001
1 2 3	2	0010
3	3	0011
4	4	0100
5	5	0101
6	6	0110
7	7	0111
8	8	1000
9	9	1001
A	10	1010
В	11	1011
С	12	1100
D	13	1101
E	14	1110
F	15	1111

Contrast: Logic Operations in C

Watch out for && vs. & (and | vs. |)...

one of the more common oopsies in

- Contrast to Bit-Level Operators
 - Logic Operations! | |, !
 - View 0 as "Fals
 - Anythipg ponzo
 - Alway
 - Early
- Example
 - !0x41
 - !0x00
 - $!!0x41 \rightarrow 0x01$
 - $0x69 \&\& 0x55 \rightarrow 0x01$
 - $0x69 | 1 | 0x55 \rightarrow 0x01$
 - p && *p (avoids null pointer access)

C programming

Shift Operations

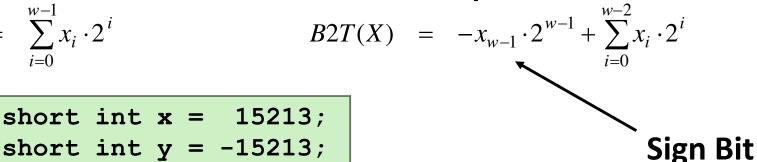
- Left Shift: x << y
 - Shift bit-vector x left y positions
 - Throw away extra bits on left
 - Fill with 0's on right
- Right Shift: x >> y
 - Shift bit-vector x right y positions
 - Throw away extra bits on right
 - Logical shift
 - Fill with 0's on left
 - Arithmetic shift
 - Replicate most significant bit on left

Undefined Behavior

Shift amount < 0 or ≥ word size</p>

Argument x	01100010
<< 3	00010 <i>000</i>
Log. >> 2	00011000
Arith. >> 2	<i>00</i> 011000

Argument x	1 01 <u>000</u> 10
<< 3	00010 <i>000</i>
Log. >> 2	00101000
Arith. >> 2	11101000


Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
- Summary

Encoding Integers

Unsigned

$$B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i$$

C short 2 bytes long

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
У	-15213	C4 93	11000100 10010011

Sign Bit

- For 2's complement, most significant bit indicates sign
 - 0 for nonnegative
 - 1 for negative

Two-complement: Simple Example

$$-16$$
 8 4 2 1
 $10 = 0$ 1 0 1 0 8+2 = 10

$$-16$$
 8 4 2 1
 $-10 = 1$ 0 1 1 0 $-16+4+2 = -10$

Two-complement Encoding Example (Cont.)

 $\mathbf{x} = 15213: 00111011 01101101$

y = -15213: 11000100 10010011

Weight	152	13	-152	213
1	1	1	1	1
2	0	0	1	2
4	1	4	0	0
8	1	8	0	0
16	0	0	1	16
32	1	32	0	0
64	1	64	0	0
128	0	0	1	128
256	1	256	0	0
512	1	512	0	0
1024	0	0	1	1024
2048	1	2048	0	0
4096	1	4096	0	0
8192	1	8192	0	0
16384	0	0	1	16384
-32768	0	0	1	-32768

Sum 15213 -15213

Numeric Ranges

Unsigned Values

- UMin = 0
 000...0
- $UMax = 2^w 1$ 111...1

■ Two's Complement Values

- $TMin = -2^{w-1}$ 100...0
- $TMax = 2^{w-1} 1$ 011...1
- Minus 1111...1

Values for W = 16

	Decimal	Hex	Binary
UMax	65535	FF FF	11111111 11111111
TMax	32767	7F FF	01111111 11111111
TMin	-32768	80 00	10000000 00000000
-1	-1	FF FF	11111111 11111111
0	0	00 00	0000000 00000000

Values for Different Word Sizes

		W		
	8	16	32	64
UMax	255	65,535	4,294,967,295	18,446,744,073,709,551,615
TMax	127	32,767	2,147,483,647	9,223,372,036,854,775,807
TMin	-128	-32,768	-2,147,483,648	-9,223,372,036,854,775,808

Observations

- \blacksquare | TMin | = TMax + 1
 - Asymmetric range

C Programming

- #include limits.h>
- Declares constants, e.g.,
 - ULONG_MAX
 - LONG_MAX
 - LONG_MIN
- Values platform specific

Unsigned & Signed Numeric Values

Χ	B2U(<i>X</i>)	B2T(<i>X</i>)
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	- 7
1010	10	-6
1011	11	- 5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

Equivalence

Same encodings for nonnegative values

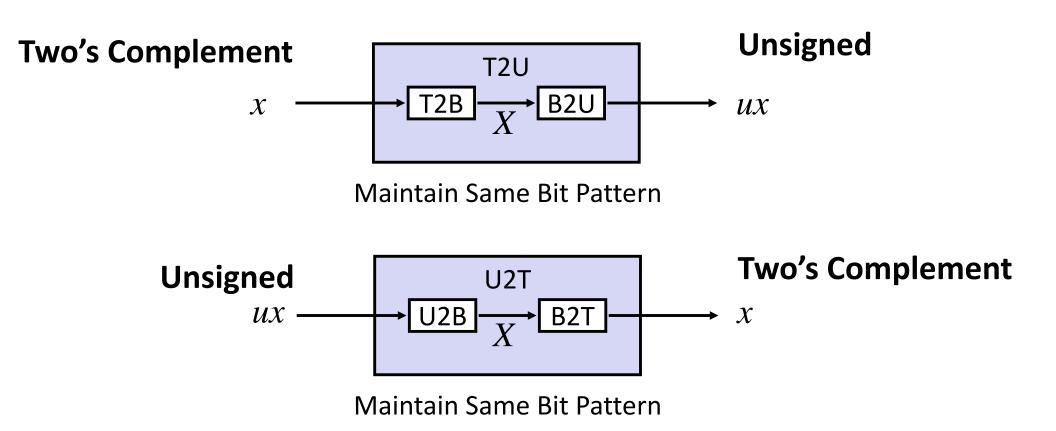
Uniqueness

- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

■ ⇒ Can Invert Mappings

- $U2B(x) = B2U^{-1}(x)$
 - Bit pattern for unsigned integer
- T2B(x) = B2T⁻¹(x)
 - Bit pattern for two's comp integer

Quiz Time!

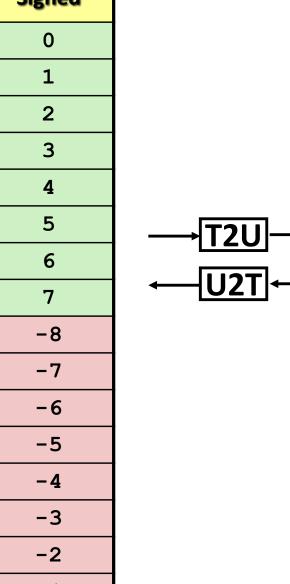

Check out:

https://canvas.cmu.edu/courses/1221

Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

Mapping Between Signed & Unsigned

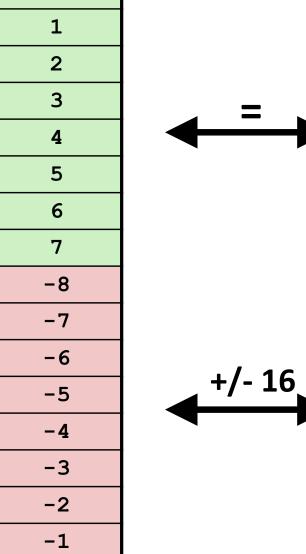


Mappings between unsigned and two's complement numbers:
 Keep bit representations and reinterpret

Mapping Signed ↔ Unsigned

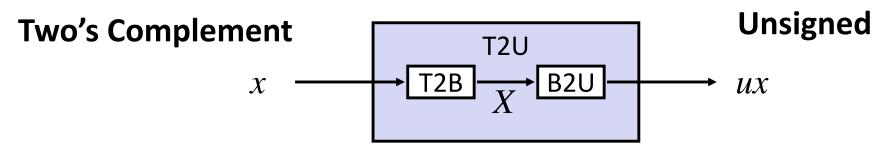
Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
- 5
-4
-3
-2
-1

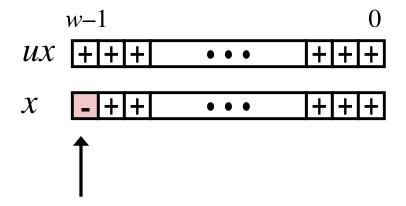


Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Mapping Signed ↔ Unsigned


Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Signed
0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1



Unsigned
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Relation between Signed & Unsigned

Maintain Same Bit Pattern

Large negative weight

becomes

Large positive weight

Conversion Visualized

2's Comp. \rightarrow Unsigned **UMax Ordering Inversion** UMax - 1Negative → Big Positive TMax + 1Unsigned TMax **TMax** Range 2's Complement Range

Signed vs. Unsigned in C

Constants

- By default are considered to be signed integers
- Unsigned if have "U" as suffix
 0U, 4294967259U

Casting

Explicit casting between signed & unsigned same as U2T and T2U

```
int tx, ty;
unsigned ux, uy;
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and procedure calls

```
tx = ux;
uy = ty;
uy = fun(tx);
```

Casting Surprises

Expression Evaluation

- If there is a mix of unsigned and signed in single expression, signed values implicitly cast to unsigned
- Including comparison operations <, >, ==, <=, >=
- **Examples for** W = 32: **TMIN = -2,147,483,648**, **TMAX = 2,147,483,647**

Constant ₁	Constant ₂	Relation	Evaluation
0	0U	==	unsigned
-1	0	<	signed
-1	0U	>	unsigned
2147483647	-2147483647-1	>	signed
2147483647U	-2147483647-1	<	unsigned
-1	-2	>	signed
(unsigned)-1	-2	>	unsigned
2147483647	2147483648U	<	unsigned
2147483647	(int) 2147483648U	>	signed

Unsigned vs. Signed: Easy to Make Mistakes

```
unsigned i;
for (i = cnt-2; i >= 0; i--)
  a[i] += a[i+1];
```

Can be very subtle

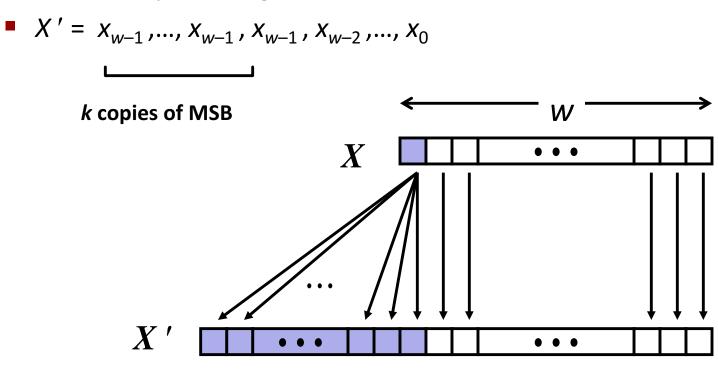
```
#define DELTA sizeof(int)
int i;
for (i = CNT; i-DELTA >= 0; i-= DELTA)
```

Summary Casting Signed ↔ Unsigned: Basic Rules

- Bit pattern is maintained
- But reinterpreted
- Can have unexpected effects: adding or subtracting 2^w
- Expression containing signed and unsigned int
 - int is cast to unsigned!!

Today: Bits, Bytes, and Integers

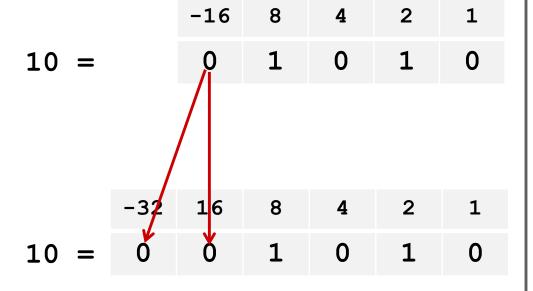
- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings

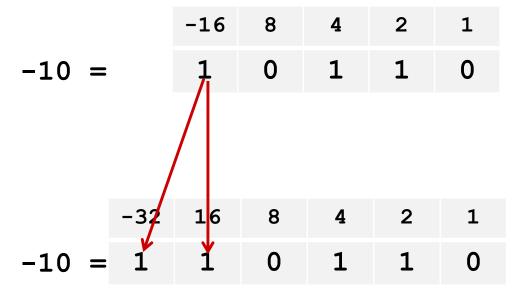

Sign Extension

Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:


Make *k* copies of sign bit:


W

Sign Extension: Simple Example

Positive number

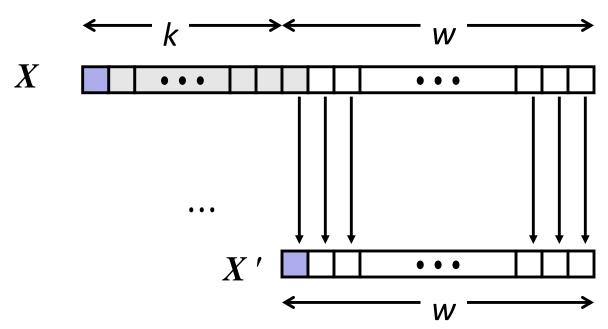
Negative number

Larger Sign Extension Example

```
short int x = 15213;
int     ix = (int) x;
short int y = -15213;
int     iy = (int) y;
```

	Decimal	Hex	Binary
x	15213	3B 6D	00111011 01101101
ix	15213	00 00 3B 6D	00000000 00000000 00111011 01101101
У	-15213	C4 93	11000100 10010011
iy	-15213	FF FF C4 93	11111111 11111111 11000100 10010011

- Converting from smaller to larger integer data type
- C automatically performs sign extension


Truncation

Task:

- Given k+w-bit signed or unsigned integer X
- Convert it to w-bit integer X' with same value for "small enough" X

Rule:

- Drop top k bits:
- $X' = X_{w-1}, X_{w-2}, ..., X_0$

Truncation: Simple Example

No sign change

$$-16$$
 8 4 2 1 $2 = 0$ 0 0 1 0

$$-16$$
 8 4 2 1 -6 = 1 1 0 1 0

$$-8$$
 4 2 1 -6 = 1 0 1 0

 $-6 \mod 16 = 26U \mod 16 = 10U = -6$

Sign change

$$10 = \begin{bmatrix} -16 & 8 & 4 & 2 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

$$-8$$
 4 2 1
 -6 = 1 0 1 0

 $10 \mod 16 = 10U \mod 16 = 10U = -6$

$$-16$$
 8 4 2 1
 $-10 = 1$ 0 1 1 0

 $-10 \mod 16 = 22U \mod 16 = 6U = 6$

Summary: Expanding, Truncating: Basic Rules

- Expanding (e.g., short int to int)
 - Unsigned: zeros added
 - Signed: sign extension
 - Both yield expected result
- Truncating (e.g., unsigned to unsigned short)
 - Unsigned/signed: bits are truncated
 - Result reinterpreted
 - Unsigned: mod operation
 - Signed: similar to mod
 - For small (in magnitude) numbers yields expected behavior

Summary of Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary