
Linux/Git Bootcamp
15-213/513 TAs

Outline
1. Getting connected to the shark machines
2. Transferring files between your computer and the shark machines
3. Exploring and organizing your files on the shark machines
4. Editing files and building code on the shark machines
5. Using git to save your work history

Getting Connected
Setup bundle/examples for today:

https://cs.cmu.edu/~213/activities/gitbootcamp.zip

(Link also available in course schedule, next to the slides for today)

1. Download it onto your local computer (using your browser, probably).
2. Extract the files to your Desktop.

(We’ll get the appropriate files onto AFS in a bit.)

https://cs.cmu.edu/~213/activities/gitbootcamp.zip

Getting Connected
What’s in the bundle?

● “KiTTY” - an SSH client for Windows
○ If you’re not using Windows, feel free to delete this now

● “gitbootcamp-example” - example project

Goals for today:

1. Connect to the shark machines
2. Transfer the “gitbootcamp-example” project onto AFS
3. Edit and build the code in the example
4. Create a git repository and push your changes to a repo on GitLab

Getting Connected
Windows: Inside the “KiTTY” folder:

1. Open “kitty_portable.exe”
2. Click “Open” to start the connection

Mac/Linux:

1. Open your terminal
2. Run the following command

(replace “andrewid” with yours):

ssh andrewid@shark.ics.cs.cmu.edu

Getting Connected
You should see something like the
image on the right.

Enter your username (Windows) and
password when prompted (it’s normal if
nothing shows up as you type).

If you see a warning about SSH host
keys, just click or enter “yes”.

Transferring Files
Going over using FileZilla, but a couple other ways to transfer files is

Windows Users: Kitty

$ sftp andrewid@shark.ics.cs.cmu.edu

https://www.digitalocean.com/community/tutorials/how-to-use-
sftp-to-securely-transfer-files-with-a-remote-server#transfe
rring-files-with-sftp

$ scp <filepath> andrewid@shark.ics.cs.cmu.edu:<filepath>

mailto:andrewid@shark.ics.cs.cmu.edu
https://www.digitalocean.com/community/tutorials/how-to-use-sftp-to-securely-transfer-files-with-a-remote-server#transferring-files-with-sftp
https://www.digitalocean.com/community/tutorials/how-to-use-sftp-to-securely-transfer-files-with-a-remote-server#transferring-files-with-sftp
https://www.digitalocean.com/community/tutorials/how-to-use-sftp-to-securely-transfer-files-with-a-remote-server#transferring-files-with-sftp
mailto:andrewid@shark.ics.cs.cmu.edu

Transferring Files
Download and install the FileZilla client: https://filezilla-project.org/download.php

You don't have to configure FileZilla, so you can start directly working with the
program.

In the QuickConnect bar at the top, enter the hostname, username, and password

Hostname: shark.ics.cs.cmu.edu Password: your password

Username: andrewid (replace with your id) Port: 22

https://filezilla-project.org/download.php

Transferring Files
Navigating on the server

Left Side has your local directory tree

Right Side has has remote server directory tree

Transferring Files

Double Click Folder Tabs or type the directory name in edit field

Transferring Files

To transfer files you can right click on the file and upload or you can drag and drop
it into the appropriate directory in the remote server. Transferring files work both
ways from the local machine to the remote server and vice versa.

Transferring Files

Under the View Tab: Directory Comparison

Identical directories and files in the local computer and remote server: NOT highlighted at all.

Directories and files with the same name in the local computer and remote server but with
different time of the last change: GREEN highlighting shows the most recent version

Exploring the File System

ls <dir>
 -l
 -a

List all files in current directory
- List permissions
- Show hidden files (“dotfiles”)

tar <opt> <name>
 x
 v
 f

File Archive Utility
- Extract
- Verbose
- File

cd <dir> Go to a directory
- ~ → Home Directory
- .. → Parent Directory
- . → Current Directory

rm <file> Delete a file
- No Trash!
- OldFiles

mkdir <name> Make a new directory cat <file> Output file to terminal

mv <src> <dest>
cp <src> <dest>

Move or Copy file from src to dest

Exploring the File System

← Make sure all work is done here!

← One day of backups

Editing Files and Building Code
● There are many editors out there
● We will show you vim, because it’s the one true editor has useful features

○ It’s installed on pretty much every machine
○ You can run it right inside your terminal

● After this short tutorial, you’ll hopefully be able to:
○ Edit your code
○ Configure some basic vim settings to make your life easier
○ Automatically indent your code (?!)
○ Build your code and see errors without ever quitting the editor (???!!!)

Editing Files and Building Code
1. We’ll start by editing the vim configuration file

○ “.vimrc”, a file in your home directory

2. From the Shark machine command line, run:
○ vim ~/.vimrc

3. Vim has a few “modes” that you will switch between. For now:
○ “normal” mode: run commands, save/quit, text manipulation

■ If you press <Escape>, you end up here
■ Type “:w” (colon, w, <Enter>) to save your file, and type “:q” (colon, q, <Enter>) to quit
■ Press “i” to enter “insert” mode

○ “insert” mode: works like a typical editor (type/delete text, move around with arrow keys)
■ “--INSERT--” will appear in the status bar at the bottom

4. Try adding the following line to the file:
○ colorscheme desert

Editing Files and Building Code
1. Let’s practice a bit more. Enter the

code on the right into “~/.vimrc”.
○ If you can’t enter text, you’re probably in

“normal” mode. Hit “i” to “insert” text.

2. Once you’re done, save and quit.
○ Get back to normal mode: <Escape>
○ Save the text: “:w” (colon, w, <Enter>)
○ Quit: “:q” (colon, q, <Enter>)

If you’re curious about what any of this
does, read the upcoming Piazza post
about Vim tricks.

Next up: editing some C code!

colorscheme desert
set mouse=a
set number
set cursorline
set colorcolumn=81
set tabstop=4
set shiftwidth=4
set softtabstop=4
set expandtab
set smartindent

Editing Files and Building Code
1. cd to “gitbootcamp-example”

○ cd ~/private/15213/gitbootcamp/gitbootcamp-example

2. Build the code and run the program
○ make
○ ./hello

3. Output should look like this ->

$ make
cc -Wall -Wextra -pedantic -std=c99 -c -o
hello.o hello.c
cc hello.o -o hello
$./hello
Hello, world!

Editing Files and Building Code
1. Let’s edit “hello.c”:

○ vim hello.c

2. Hopefully, it looks something like ->
○ Red bar on the right: colorcolumn=81

■ Easily see if a line is too long

3. Hit “v” to enter “visual” mode
○ Use the cursor keys to select text
○ “y”: copy (“yank”), “d”: cut (“delete”)
○ “p”: paste after cursor
○ “=”: auto-indent selected text (!!!)

4. Mouse support: if your terminal
supports it, click to move/select text

Editing Files and Building Code
1. Edit your code to look like this ->
2. Save the file (“:w” in normal mode)
3. Now, for the magic: type “:make”
4. You should see some output in

your terminal from make ->
5. Hit <Enter> to go back to your code

○ (might have to press it twice)

Congratulations, you just built your code
from inside vim. But wait, there’s more!

#include <stdio.h>

int main() {
foo();
printf("Hello, world!\n", 12345);

}

cc -Wall -Wextra -pedantic -std=c99 -c -o hello.o
hello.c
hello.c: In function ‘main’:
hello.c:4: warning: implicit declaration of function
‘foo’
hello.c:5: warning: too many arguments for format
cc hello.o -o hello
hello.o: In function `main':
hello.c:(.text+0xa): undefined reference to `foo'
collect2: ld returned 1 exit status
make: *** [hello] Error 1

Press ENTER or type command to continue

Editing Files and Building Code
We probably won’t have time for this,
but on your own time you can:

1. Type “:cw” to bring up a window
with all the build errors. (!!!)

2. Put your cursor on an error and
press <Enter> to jump to it

○ You can also double-click on it

3. Switch windows: <Ctrl-w> j and
<Ctrl-w> k (or with the mouse)

○ Use “:q” to close the active window

Editing Files and Building Code
● There’s a lot more to vim. If you want to learn more:

○ Run the “vimtutor” program
○ Read “:help” inside Vim
○ Check out the upcoming Piazza post and other posts on the internet

● “Use a Single Editor Well”
○ “The editor should be an extension of your hand; make sure your editor is configurable,

extensible, and programmable.”
○ https://pragprog.com/the-pragmatic-programmer/extracts/tips

● If you don’t like vim, feel free to use whatever works best for you! However:
○ In general, if you must edit your code on your local machine, you should transfer your files

back to the Shark machines and build it there.
■ Various plugins to do this automatically for most popular editors (Sublime SFTP, etc.)

○ We do NOT recommend using a C IDE; build environment setup is painful/impossible.

https://pragprog.com/the-pragmatic-programmer/extracts/tips

Introduction to Git

● Git is a version control system for tracking
changes in computer files and coordinating
work on those files among multiple people.

● It allows you to work on multiple versions of
the same code and maintain it efficiently.

● We encourage you to use git for all your
coding assignments in this course.

Setting up Git on your Shark machine

$ git config --global user.name "<Your Name>"
$ git config --global user.email <Your email>
$ git config --global push.default simple

Note: Make sure, the email you enter is the same one you use to login to GitLab

Setting up your first local git repository
#Switch to the ‘gitbootcamp-example’ directory and initialize
your empty git repo.

$ git init

$ git status

#Check the status of the repo. You’d notice that all the files
are untracked at the moment. Add ‘hello.c’ for tracking.

$ git add hello.c

#Alternatively, you could have added all the files in the
directory for tracking, using a single command.

$ git add -A

Your first commit

#Make your changes in the file(s). When you are ready, you
must ‘commit’ your changes

$ git commit hello.c

#Variations:

$ git commit hello.c -m “commit message”

$ git commit -a -m “commit message”

Opens a text editor (vi) for writing a commit message.
Time to use your vim skills you just acquired!

You may type in the commit message with the command itself

Commits all files with changes in the repo

Note: All your changes are stored in the local repository. In the next slide we shall talk about linking this
to your GitLab repository

Setting up GitLab

$ ssh-keygen -t rsa -C "GitLab" -b 4096

● Before you can link your local repository to your GitLab account, you must set up SSH Keys for
authentication

● Generate SSH keys on the client machine (shark machines here) and add them to your GitLab
account.

Use the default file path (press Enter). Optionally type in a password, else press Enter

Sign into GitLab through
Shibboleth

Setting up GitLab

Copy the Public Key
Select the entire public key with the mouse and

■Cmd+c if you are on a mac
■Ctrl+Insert if you are on windows using KiTTY or on Linux using SSH

#Print out the public key on screen

$ cat ~/.ssh/id_rsa.pub

Setting up GitLab

Go to your account settings-> SSH Keys and paste
the key here.

Setting up GitLab

Create a new project with an appropriate name

Always make sure the visibility level is set
to Private

Setting up GitLab
Go to your project and copy the repo URL

Add the path to your GitLab repo on your local git repo (on the shark
machine). Your command should looks something like this:

$ git remote add origin
git@git.ece.cmu.edu:andrewid/git-boot-camp.git

Pushing your commits

All your commits on the local git repo won’t get reflected on the GitLab repo
until you push your commits.

$ git push origin master

This will push all the commits made on the ‘master’ branch of the repository
pointed by ‘origin’.

Cloning an existing repository

Assuming you’ve already set up your SSH keys, copy the URL of the repo
from GitLab and create a git repo on your local machine (shark machine in
your case). Your command should looks something like this:

$ git clone
git@git.ece.cmu.edu:andrewid/git-boot-camp.git

You might want to create a separate folder for the new repo

Git Commands
add Stage new or changed files rebase Modify, combine, delete, ... previous

commits

commit Save current staged files merge Combine commits from specified branch
into current branch

push/pull Push/pull local index to/from the
remote server

checkout Examine a different commit/branch/file

log Show history of git commits stash Temporarily save your current
uncommitted changes

status Shows working directory status
(added/modified/deleted files)

stash pop Restore previously stashed changes

show Show a file from a different commit or
branch

diff Show changes between commits, files,
unstaged changes, ...

branch Create a new branch (use a new
branch for experimenting safely)

clone Clone a git repository (like a remote
GitLab repo)

More on Git

Getting help:
■ git help <command>
■ Piazza/Office hours

Some great git tutorials:
■ https://try.github.io/

■ https://www.atlassian.com/git/tutorials

https://try.github.io/
https://www.atlassian.com/git/tutorials

