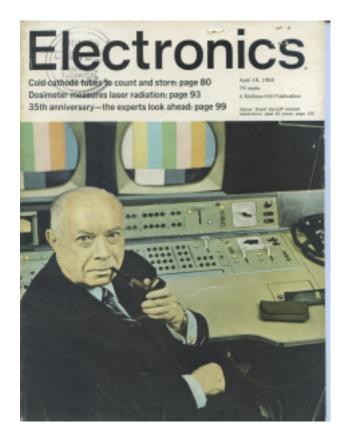
Future of Computing: Moore's Law & Its Implications + High-Performance Computing

15-213: Introduction to Computer Systems 27th Lecture, Dec. 1, 2016

Instructors:

Randy Bryant

Moore's Law Origins



April 19, 1965

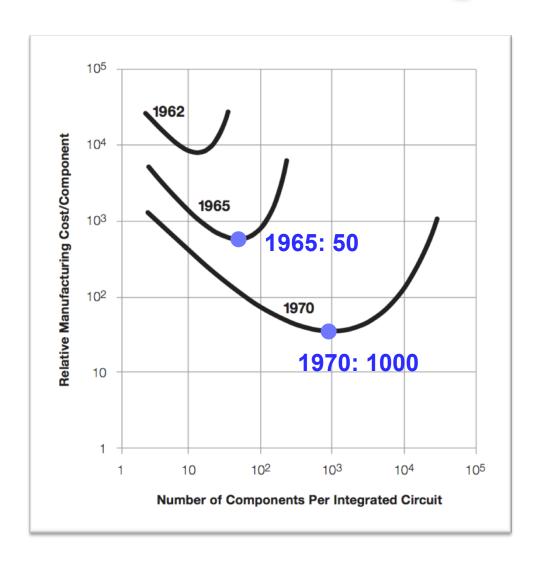
Cramming more components onto integrated circuits

With unit cost falling as the number of components per circuit rises, by 1975 economics may dictate squeezing as many as 65,000 components on a single silicon chip

By Gordon E. Moore

Director, Research and Development Laboratories, Fairchild Semiconductor division of Fairchild Camera and Instrument Corp.

Moore's Law Origins



Moore's Thesis

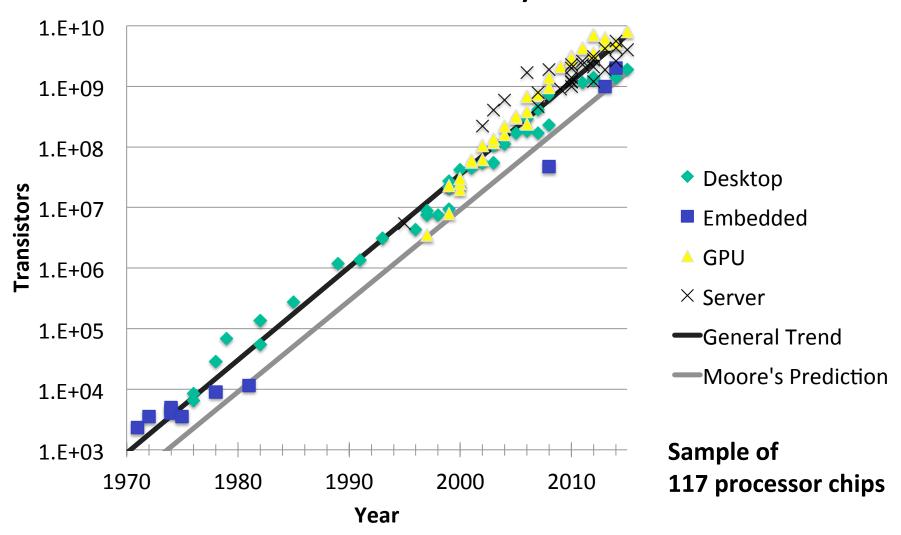
- Minimize price per device
- Optimum number of devices / chip increasing 2x / year

Later

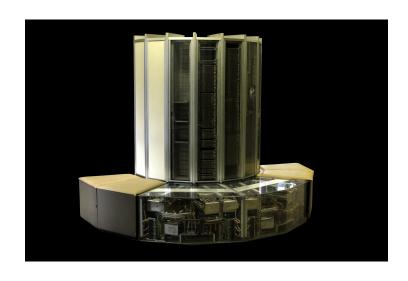
- 2x / 2 years
- "Moore's Prediction"

Moore's Law: 50 Years

Transistor Count by Year



What Moore's Law Has Meant



1976 Cray 1

- 250 M Ops/second
- ~170,000 chips
- 0.5B transistors
- 5,000 kg, 115 KW
- \$9M
- 80 manufactured

2014 iPhone 6

- > 4 B Ops/second
- ~10 chips
- > 3B transistors
- 120 g, < 5 W
- **\$649**
- 10 million sold in first 3 days

What Moore's Law Has Meant

1965 Consumer Product

2015 Consumer Product

Apple A8 Processor 2 B transistors

Visualizing Moore's Law to Date

If transistors were the size of a grain of sand

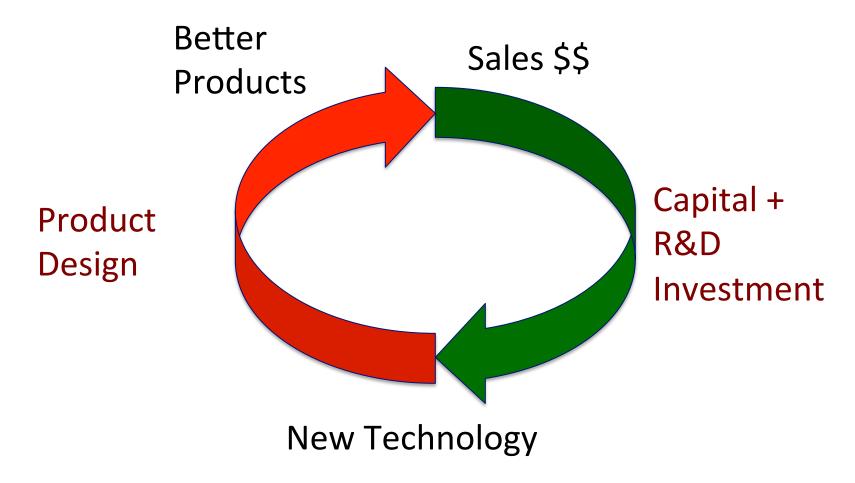
Intel 400419702,300 transistors

0.1 g

Apple A8
2014
2 B transistors

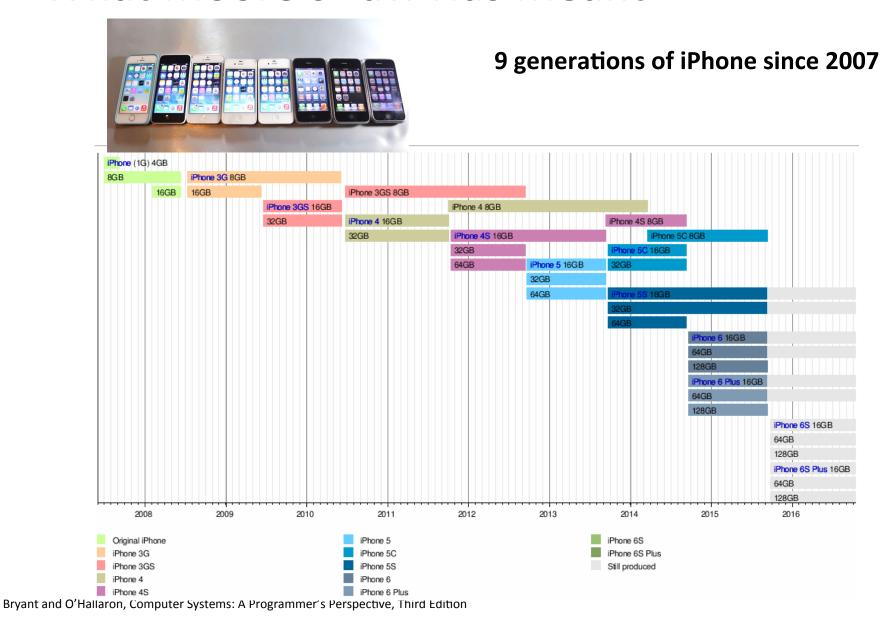
88 kg

Moore's Law Economics

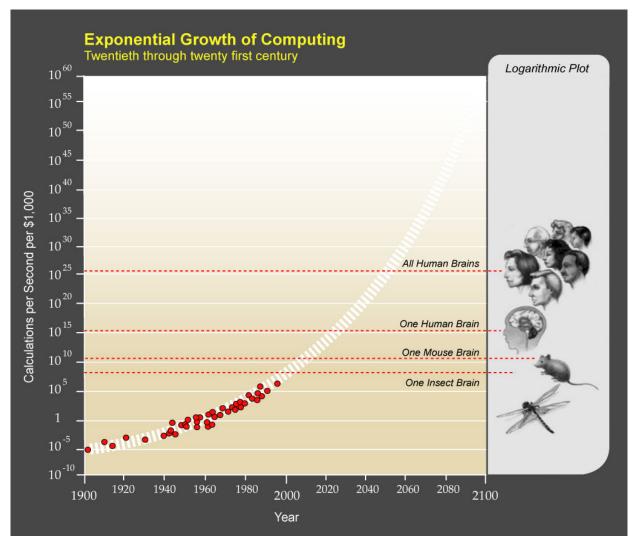


Consumer products sustain the \$300B semiconductor industry

What Moore's Law Has Meant



What Moore's Law Could Mean



What Moore's Law Could Mean

2015 ConsumerProduct

2065 Consumer Product

- Portable
- Low power
- Will drive markets & innovation

Requirements for Future Technology

Must be suitable for portable, low-power operation

- Consumer products
- Internet of Things components
- Not cryogenic, not quantum

Must be inexpensive to manufacture

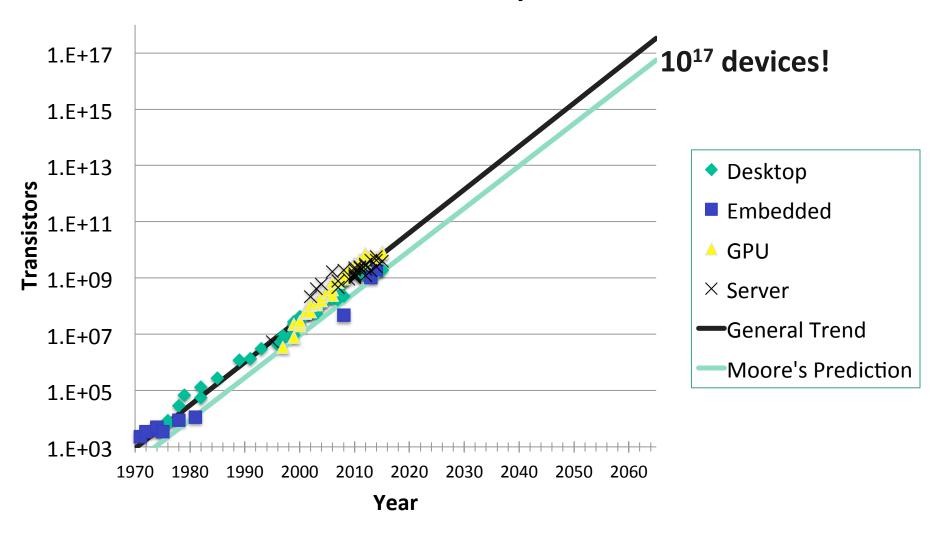
- Comparable to current semiconductor technology
 - O(1) cost to make chip with O(N) devices

Need not be based on transistors

- Memristors, carbon nanotubes, DNA transcription, ...
- Possibly new models of computation
- But, still want lots of devices in an integrated system

Moore's Law: 100 Years

Device Count by Year



Visualizing 10¹⁷ Devices

If devices were the size of a grain of sand

0.1 m³
3.5 X 10⁹ grains
Bryant and O'Hallaron, Computer Systems: A Programmer's Perspective, Third Edition

1 million m³ 0.35 X 10¹⁷ grains

Increasing Transistor Counts

- 1. Chips have gotten bigger
 - 1 area doubling / 10 years
- 2. Transistors have gotten smaller
 - 4 density doublings / 10 years

Will these trends continue?

Chips Have Gotten Bigger

Intel 4004

1970

2,300 transistors

12 mm²

Apple A8

2014

2 B transistors

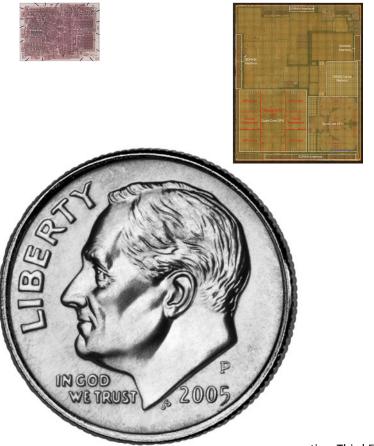
89 mm²

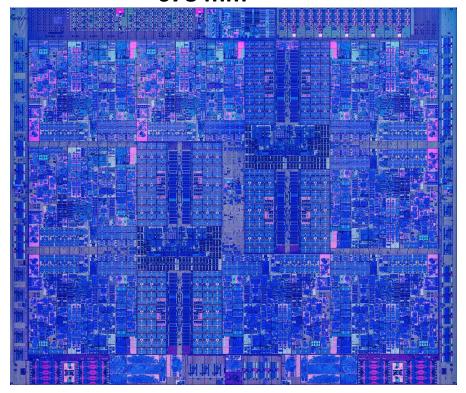
IBM z13

205

4 B transistors

678 mm²

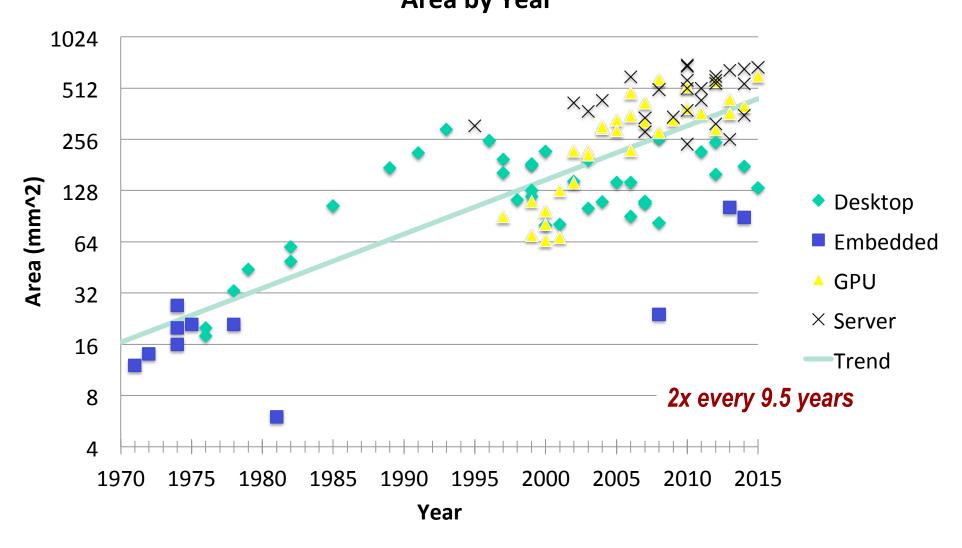




Bryant aı tive, Third Edition 16

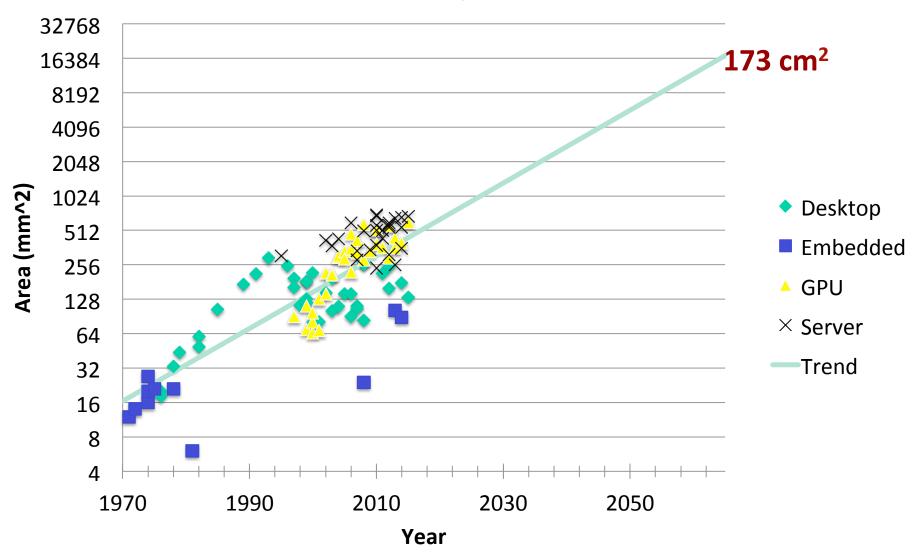
Chip Size Trend

Area by Year



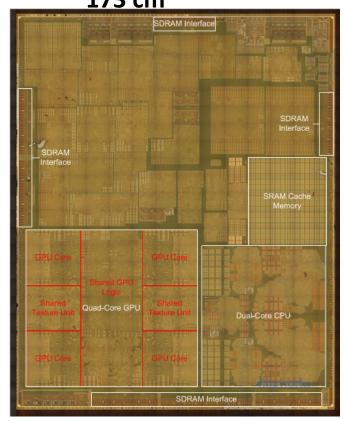
Chip Size Extrapolation

Area by Year



Extrapolation: The iPhone 31s

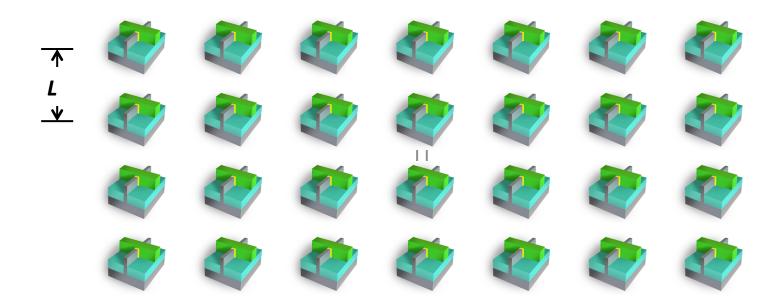
Apple A59 2065 10¹⁷ transistors 173 cm²



Transistors Have Gotten Smaller

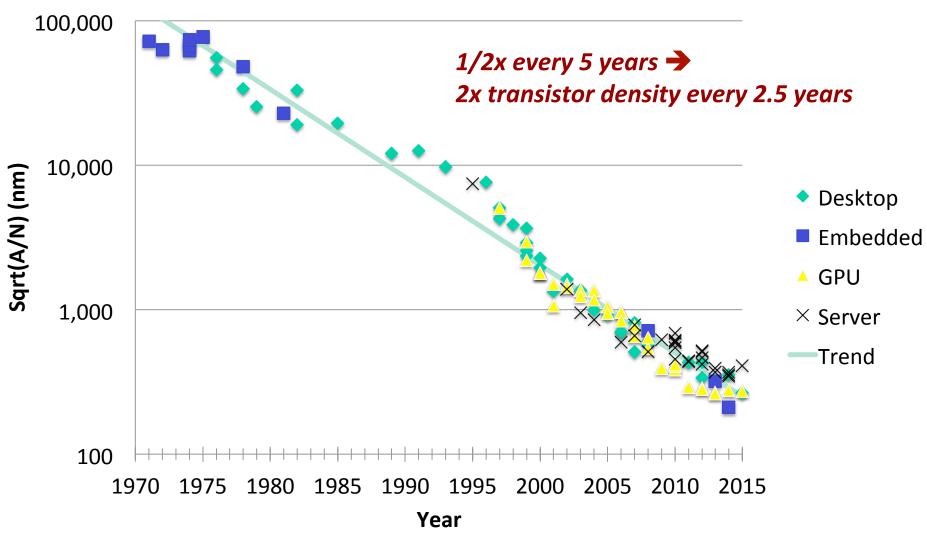
- Area A
- N devices
- Linear Scale L

$$L = \sqrt{A/N}$$



Linear Scaling Trend

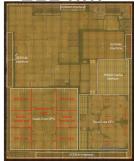
Linear Scale by Year



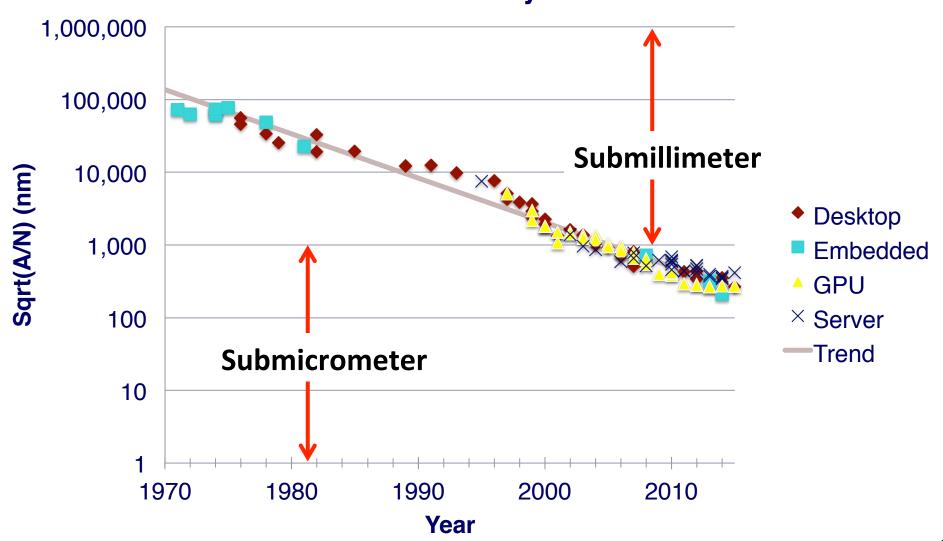
Decreasing Feature Sizes

Intel 4004 1970 2,300 transistors L = 72,000 nm

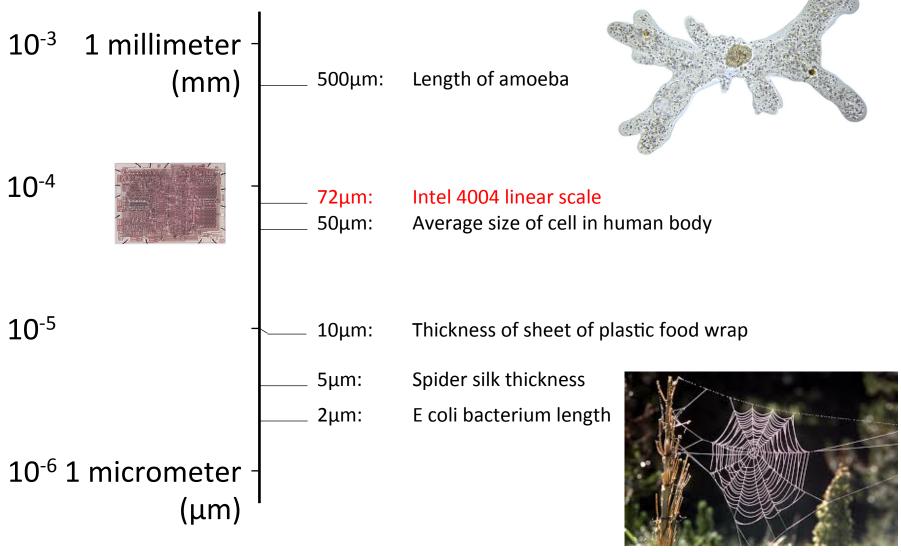
Apple A8
2014
2 B transistors
L = 211 nm



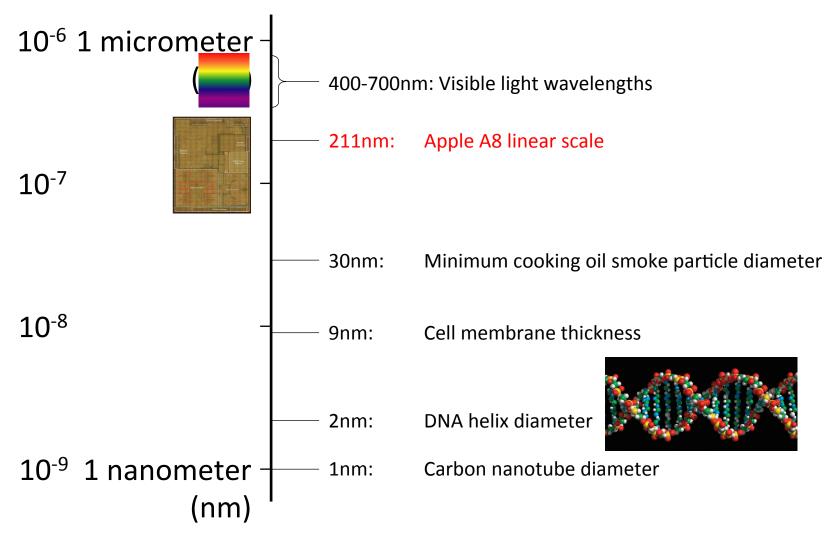
Linear Scaling Trend



Submillimeter Dimensions

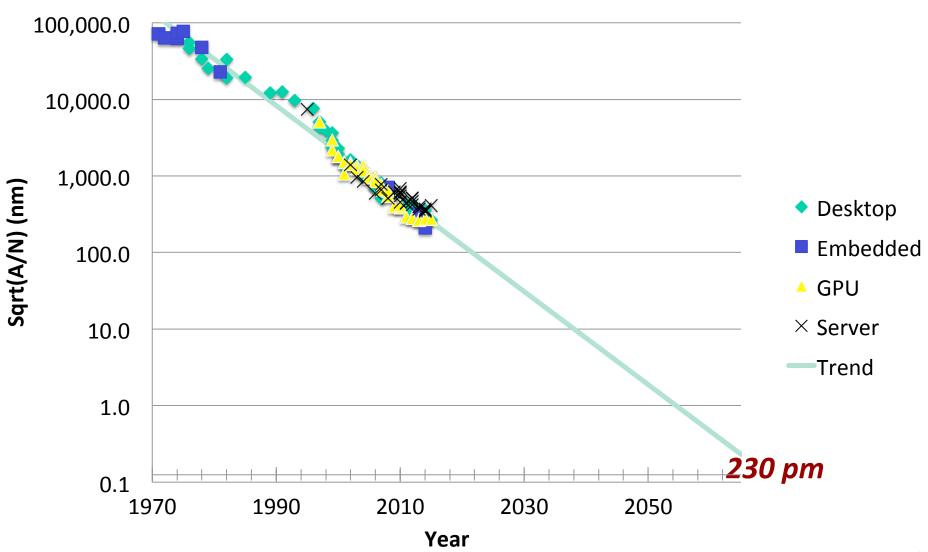


Submicrometer Dimensions

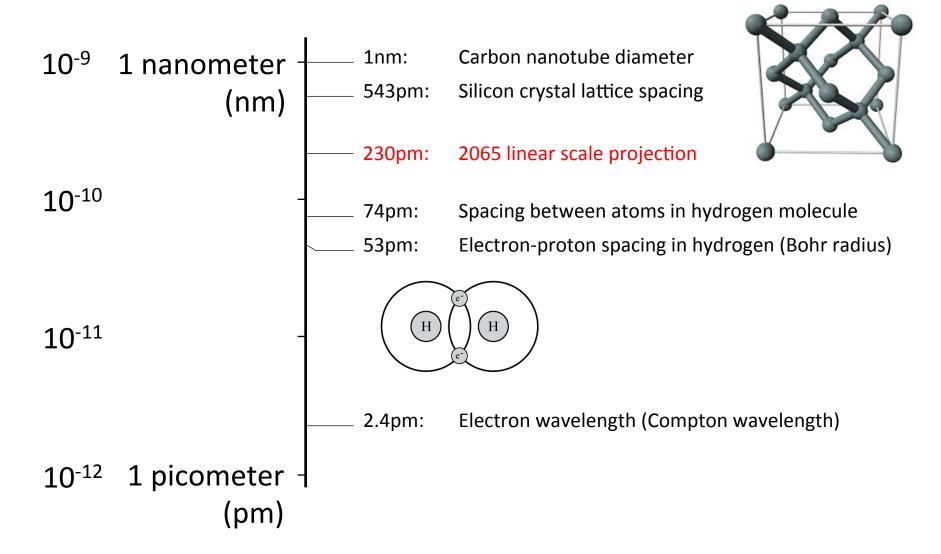


Linear Scaling Extrapolation

Linear Scale by Year

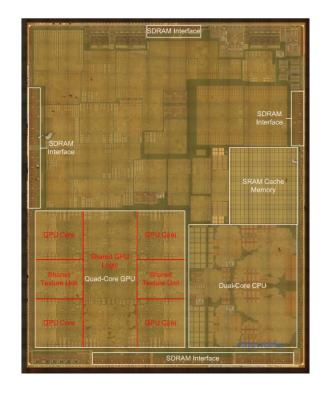


Subnanometer Dimensions



Reaching 2065 Goal

- Target
 - 10¹⁷ devices
 - 400 mm²
 - L = 63 pm

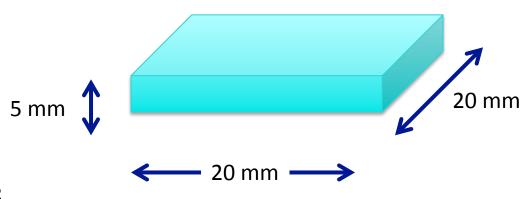


Is this possible?

Not with 2-d fabrication

Fabricating in 3 Dimensions

2000 mm³



Parameters

- 10¹⁷ devices
- 100,000 logical layers
 - Each 50 nm thick
 - ~1,000,000 physical layers
 - To provide wiring and isolation
- L = 20 nm
 - 10x smaller than today

2065 mm³

3D Fabrication Challenges

Yield

How to avoid or tolerate flaws

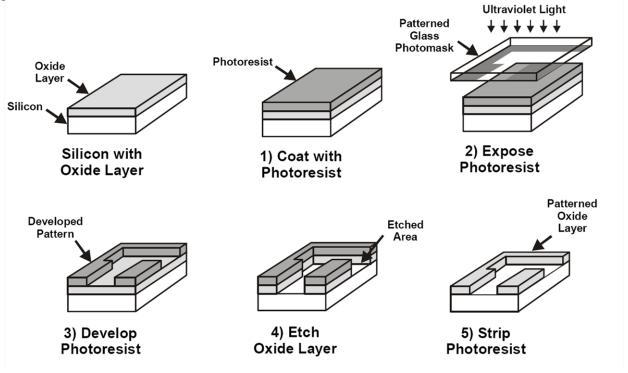
Cost

High cost of lithography

Power

- Keep power consumption within acceptable limits
- Limited energy available
- Limited ability to dissipate heat

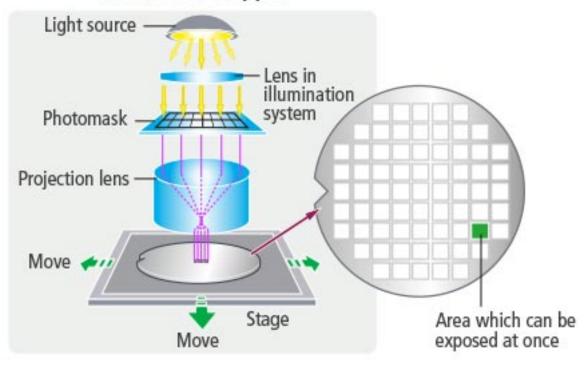
Photolithography



- Pattern entire chip in one step
- Modern chips require ~60 lithography steps
- Fabricate N transistor system with O(1) steps

Fabrication Costs

Method of stepper



Stepper

- Most expensive equipment in fabrication facility
- Rate limiting process step
 - 18s / wafer
- Expose 858 mm² per step
 - 1.2% of chip area

Fabrication Economics

Currently

- Fixed number of lithography steps
- Manufacturing cost \$10-\$20 / chip
 - Including amortization of facility

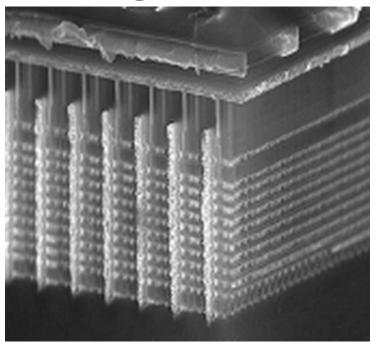
■ Fabricating 1,000,000 physical layers

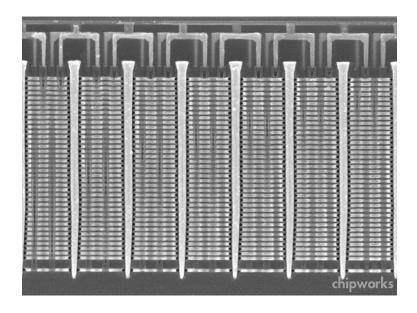
Cannot do lithography on every step

Options

- Chemical self assembly
 - Devices generate themselves via chemical processes
- Pattern multiple layers at once

Samsung V-Nand Flash Example





- Build up layers of unpatterned material
- Then use lithography to slice, drill, etch, and deposit material across all layers
- ~30 total masking steps
- Up to 48 layers of memory cells
- Exploits particular structure of flash memory circuits

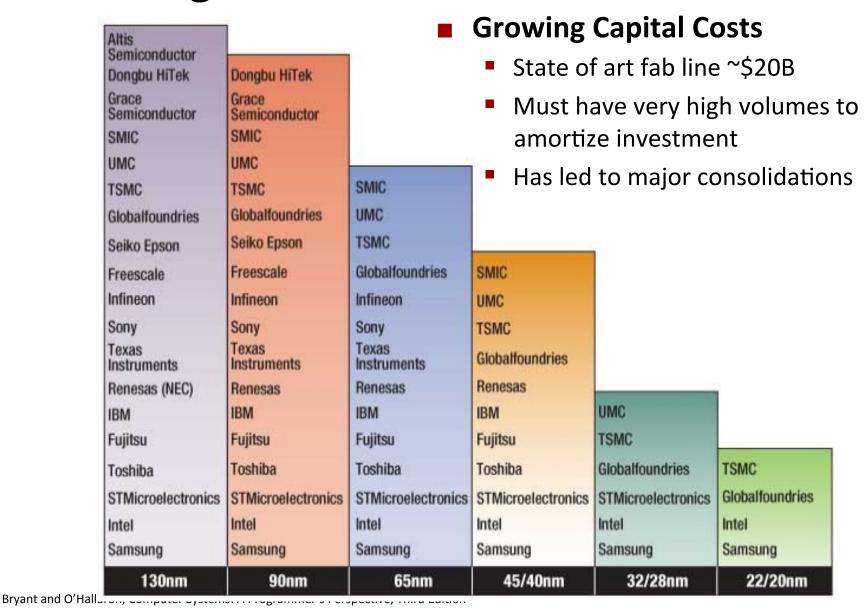
Meeting Power Constraints

- 2 B transistors
- 2 GHz operation
- 1—5 W

Can we increase number of devices by 500,000x without increasing power requirement?

- 64 B neurons
- 100 Hz operation
- 15—25 W
 - Liquid cooling
 - Up to 25% body's total energy consumption

Challenges to Moore's Law: Economic



Dennard Scaling

- Due to Robert Dennard, IBM, 1974
- Quantifies benefits of Moore's Law

How to shrink an IC Process

- Reduce horizontal and vertical dimensions by k
- Reduce voltage by k

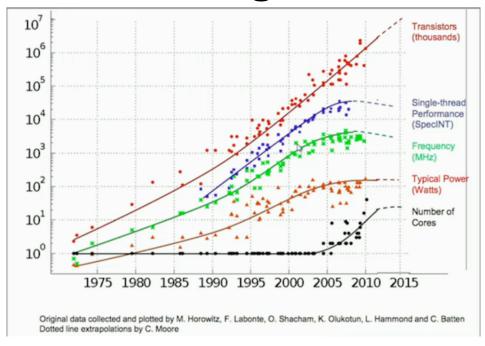
Outcomes

- Devices / chip increase by k²
- Clock frequency increases by k
- Power / chip constant

Significance

- Increased capacity and performance
- No increase in power

End of Dennard Scaling



What Happened?

- Can't drop voltage below ~1V
- Reached limit of power / chip in 2004
- More logic on chip (Moore's Law), but can't make them run faster
 - Response has been to increase cores / chip

Final Thoughts about Technology

- Compared to future, past 50 years will seem fairly straightforward
 - 50 years of using photolithography to pattern transistors on twodimensional surface
- Questions about future integrated systems
 - Can we build them?
 - What will be the technology?
 - Are they commercially viable?
 - Can we keep power consumption low?
 - What will we do with them?
 - How will we program / customize them?

HIGH-PERFORMANCE COMPUTING

Comparing Two Large-Scale Systems

Oakridge Titan

- Monolithic supercomputer (3rd fastest in world)
- Designed for computeintensive applications

Google Data Center

- Servers to support millions of customers
- Designed for data collection, storage, and analysis

Computing Landscape Data Intensity Google Data Center Web search Mapping / directions Internet-Scale Computing Language translation **Video streaming** Cloud **Oakridge Titan Services Traditional Supercomputing Modeling & Simulation-Driven** Science & Personal **Engineering** Computing

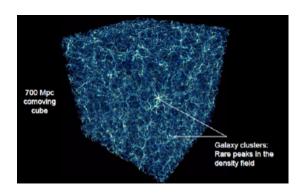
Supercomputing Landscape

Oakridge Titan Traditional Supercomputing

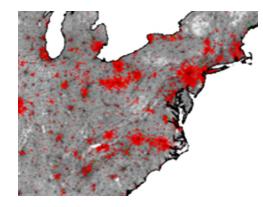
Modeling &
Simulation-Driven
Science &
Engineering

Personal Computing

Supercomputer Applications



Total State of the Control of the Co



Science

Industrial Products

Public Health

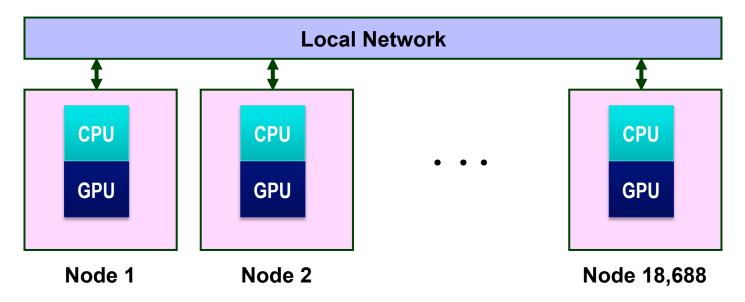
Simulation-Based Modeling

- System structure + initial conditions + transition behavior
- Discretize time and space
- Run simulation to see what happens

Requirements

- Model accurately reflects actual system
- Simulation faithfully captures model

Titan Hardware



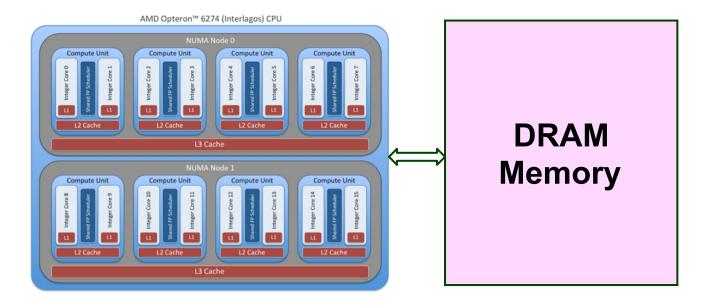
Each Node

- AMD 16-core processor
- nVidia Graphics Processing Unit
- 38 GB DRAM
- No disk drive

Overall

■ 7MW, \$200M

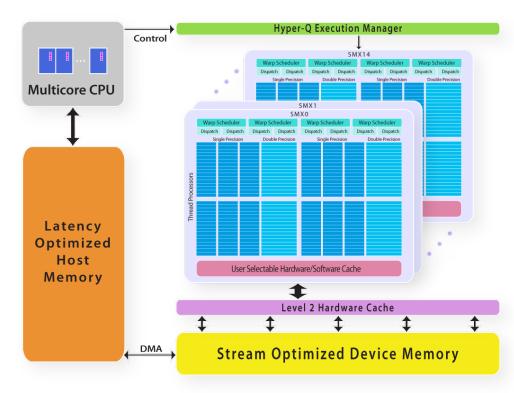
Titan Node Structure: CPU



CPU

- 16 cores sharing common memory
- Supports multithreaded programming
- ~0.16 x 10¹² floating-point operations per second (FLOPS) peak performance

Titan Node Structure: GPU



Kepler GPU

- 14 multiprocessors
- ©2013 The Portland Group, Inc.
- Each with 12 groups of 16 stream processors
 - 14 X 12 X 16 = 2688
- Single-Instruction, Multiple-Data parallelism
 - Single instruction controls all processors in group
- 4.0 x 10¹² FLOPS peak performance

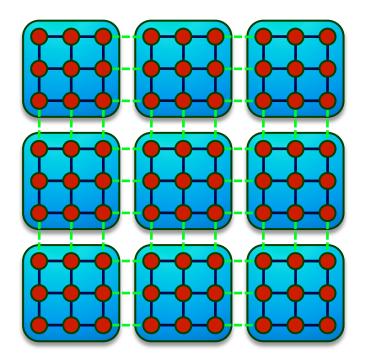
Titan Programming: Principle

Solving Problem Over Grid

- E.g., finite-element system
- Simulate operation over time

Bulk Synchronous Model

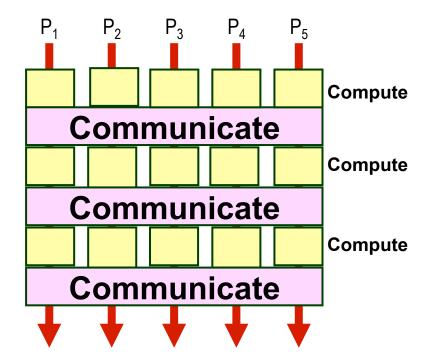
- Partition into Regions
 - p regions for p-node machine
- Map Region per Processor



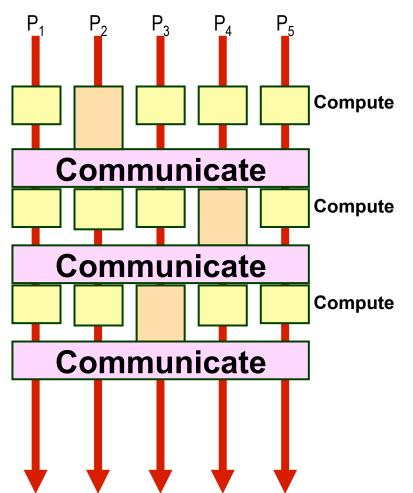
Titan Programming: Principle (cont)

Bulk Synchronous Model

- Map Region per Processor
- Alternate
 - All nodes compute behavior of region
 - Perform on GPUs
 - All nodes communicate values at boundaries



Bulk Synchronous Performance



- Limited by performance of slowest processor
- Strive to keep perfectly balanced
 - Engineer hardware to be highly reliable
 - Tune software to make as regular as possible
 - Fliminate "noise"
 - Operating system events
 - Extraneous network activity

Carnegie Mellon

Titan Programming: Reality

System Level

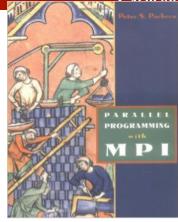
 Message-Passing Interface (MPI) supports node computation, synchronization and communication

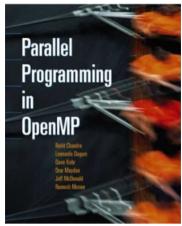
Node Level

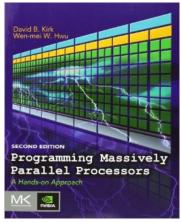
- OpenMP supports thread-level operation of node CPU
- CUDA programming environment for GPUs
 - Performance degrades quickly if don't have perfect balance among memories and processors

Result

- Single program is complex combination of multiple programming paradigms
- Tend to optimize for specific hardware configuration

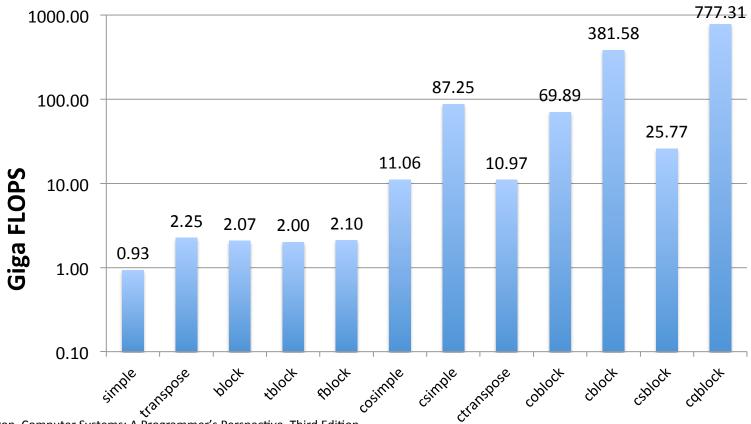






My GPU Experience

- Multiply two 1024 x 1024 matrices (MM)
 - 2 X 10⁹ floating point operations
 - Express performance in Giga FLOPS
 - Program in CUDA and map onto nVidia GPU



Matrix Multiplication Progress

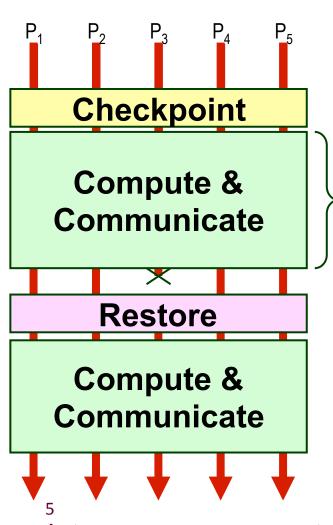
Versions

Naive	1
Simple parallel	11
Blocking	70
nVidia Example Code	388
Reorient memory accesses	382
Packed data access	777

Observations

- Progress is very nonlinear
 - Not even monotonic
- Requires increased understanding of how program maps onto hardware
- Becomes more specialized to specific hardware configuration

MPI Fault Tolerance



Checkpoint

- Periodically store state of all processes
- Significant I/O traffic

Restore

Wasted • When failure occurs

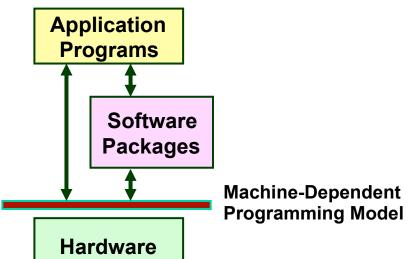
Computation Reset state to that of last checkpoint

All intervening computation wasted

Performance Scaling

 Very sensitive to number of failing components

Supercomputer Programming Model



Program on top of bare hardware

Performance

- Low-level programming to maximize node performance
- Keep everything globally synchronized and balanced

Reliability

- Single failure causes major delay
- Engineer hardware to minimize failures

Data-Intensive

Computing Landscape

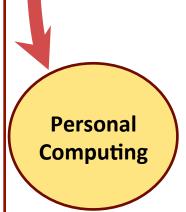
Data Intensity

Google Data Center

Internet-Scale Computing

- Web search
- Mapping / directions
- Language translation
- Video streaming

Cloud Services



Internet Computing

Web Search

- Aggregate text data from across WWW
- No definition of correct operation
- Do not need real-time updating

Mapping Services

- Huge amount of (relatively) static data
- Each customer requires individualized computation

Online Documents

- Must be stored reliably
- Must support real-time updating
- (Relatively) small data volumes

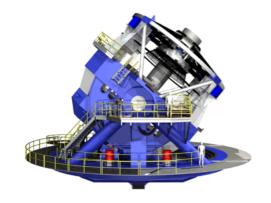
Other Data-Intensive Computing Applications

Wal-Mart

- 267 million items/day, sold at 6,000 stores
- HP built them 4 PB data warehouse
- Mine data to manage supply chain, understand market trends, formulate pricing strategies

LSST

- A 3.2 gigapixel digital camera
- Generate 30 TB/day of image data



Data-Intensive Application Characteristics

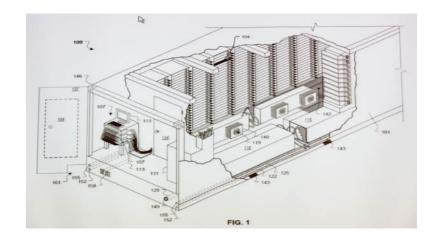
Diverse Classes of Data

- Structured & unstructured
- High & low integrity requirements

Diverse Computing Needs

- Localized & global processing
- Numerical & non-numerical
- Real-time & batch processing

Google Data Centers

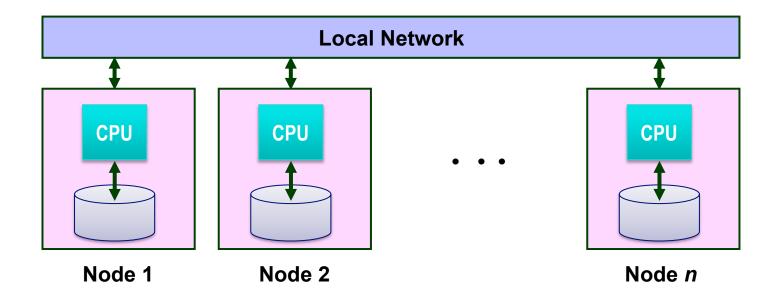


■Dalles, Oregon

- Hydroelectric power @ 2¢ / KW Hr
- 50 Megawatts
- Enough to power 60,000 homes

- Engineered for low cost, modularity & power efficiency
- Container: 1160 server nodes, 250KW

Google Cluster



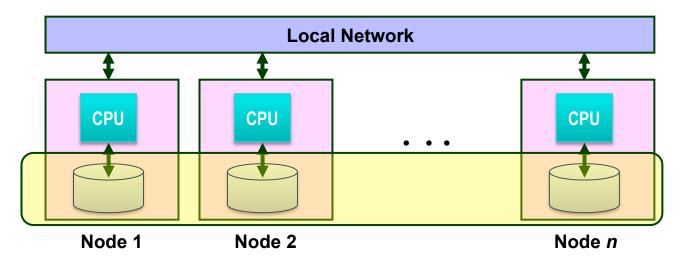
Typically 1,000–2,000 nodes

Node Contains

- 2 multicore CPUs
- 2 disk drives
- DRAM

Hadoop Project

File system with files distributed across nodes

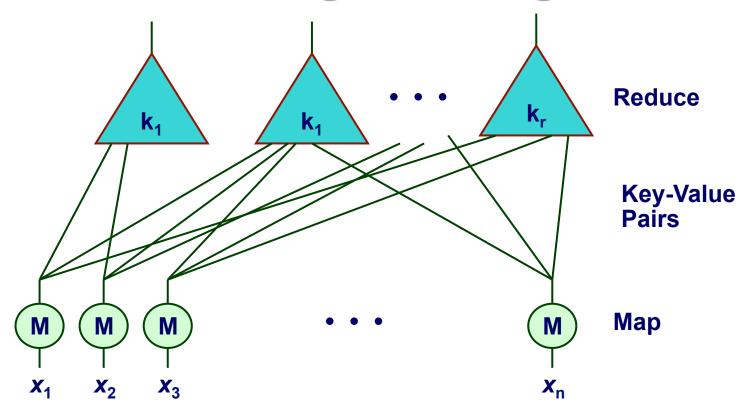


- Store multiple (typically 3 copies of each file)
 - If one node fails, data still available
- Logically, any node has access to any file
 - May need to fetch across network

Map / Reduce programming environment

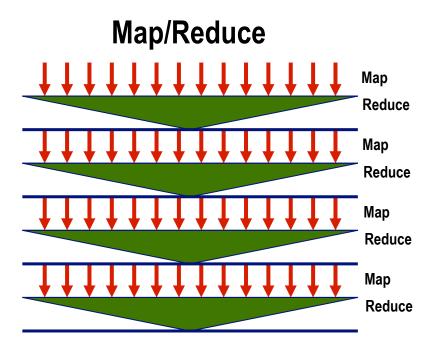
Software manages execution of tasks on nodes

Map/Reduce Programming Model



- Map computation across many objects
 - E.g., 10¹⁰ Internet web pages
- Aggregate results in many different ways
- System deals with issues of resource allocation & reliability

Map/Reduce Operation



Characteristics

- Computation broken into many, short-lived tasks
 - Mapping, reducing
- Tasks mapped onto processors dynamically
- Use disk storage to hold intermediate results

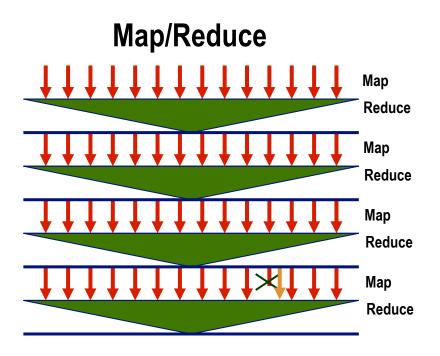
Strengths

- Flexibility in placement, scheduling, and load balancing
- Can access large data sets

Weaknesses

- Higher overhead
- Lower raw performance

Map/Reduce Fault Tolerance



Data Integrity

- Store multiple copies of each file
- Including intermediate results of each Map / Reduce
 - Continuous checkpointing

Recovering from Failure

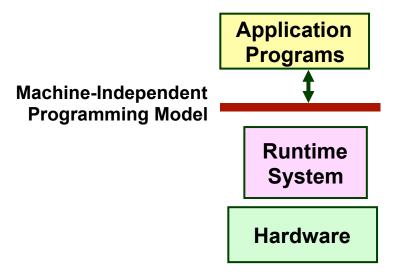
- Simply recompute lost result
 - Localized effect
- Dynamic scheduler keeps all processors busy
- Use software to build reliable system on top of unreliable hardware

Cluster Programming Model

- Application programs written in terms of high-level operations on data
- Runtime system controls scheduling, load balancing, ...

Scaling Challenges

- Centralized scheduler forms bottleneck
- Copying to/from disk very costly
- Hard to limit data movement
 - Significant performance factor



Recent Programming Systems

Spark Project

Spark Spark Streaming MLlib (machine learning) GraphX (graph)

Apache Spark

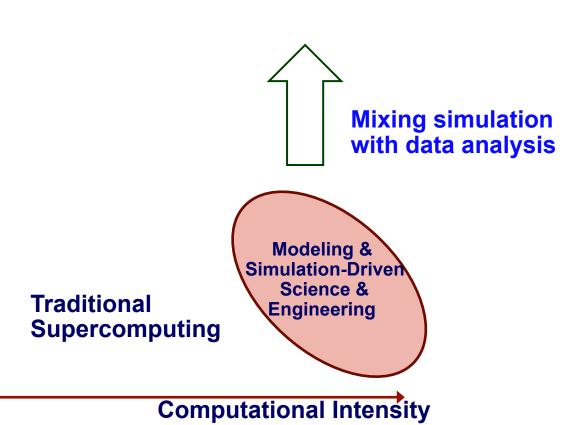
- at U.C., Berkeley
- Grown to have large open source community

Machine Learning Startup GraphLab Gets A New Name And An \$18.5M Check

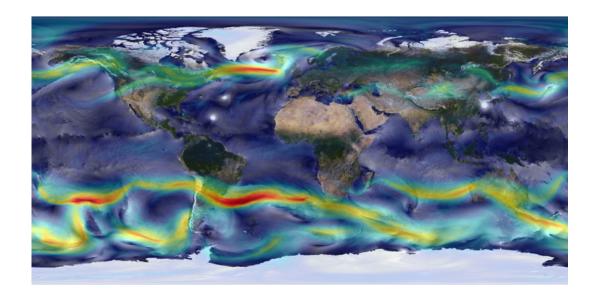
GraphLab

- Started as project at CMU by Carlos Guestrin
- Environment for describing machine-learning algorithms
 - Sparse matrix structure described by graph
 - Computation based on updating of node values

Computing Landscape Trends



Combining Simulation with Real Data



Limitations

- Simulation alone: Hard to know if model is correct
- Data alone: Hard to understand causality & "what if"

Combination

Check and adjust model during simulation

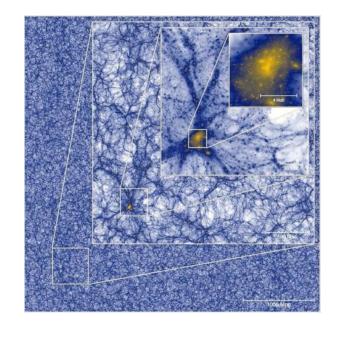
Real-Time Analytics

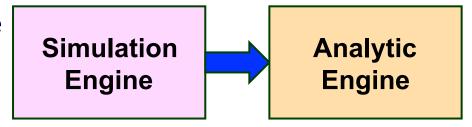
Millenium XXL Simulation (2010)

- 3 X 10⁹ particles
- Simulation run of 9.3 days on 12,228 cores
- 700TB total data generated
 - Save at only 4 time points
 - 70 TB
- Large-scale simulations generate large data sets

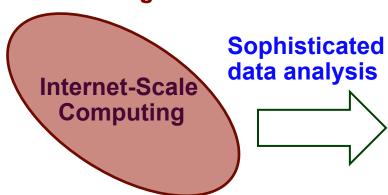
What If?

 Could perform data analysis while simulation is running





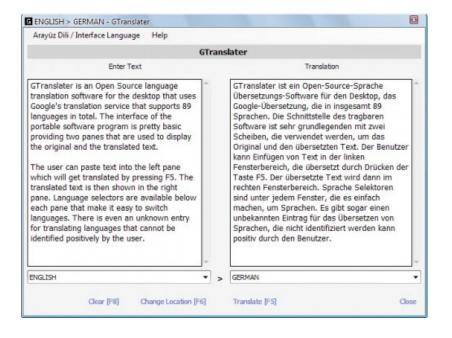
Google Data Center



Computing Landscape Trends

Example Analytic Applications

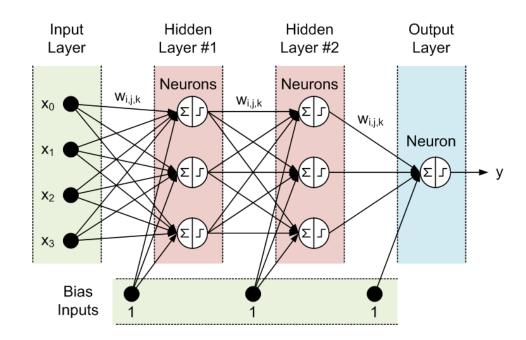
Microsoft Project Adam



Data Analysis with Deep Neural Networks

Task:

Compute classification of set of input signals



Training

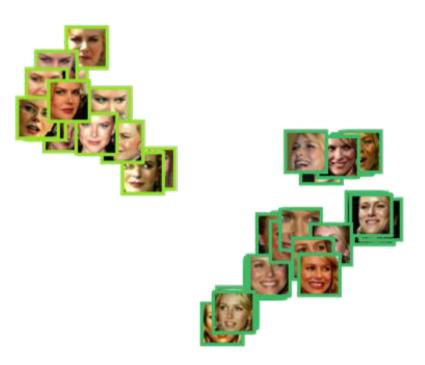
- Use many training samples of form input / desired output
- Compute weights that minimize classification error

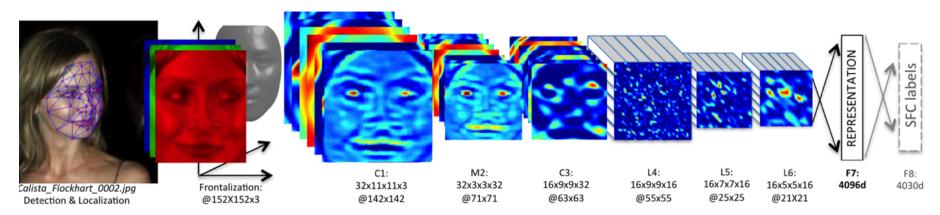
Operation

■ Propagate signals from input to output

DNN Application Example

■ Facebook DeepFace Architecture





Training DNNs

Characteristics

- Iterative numerical algorithm
- Regular data organization

Project Adam Training

- 2B connections
- 15M images
- 62 machines
- 10 days

Trends Google Data Center Data Intensity **Sophisticated** data analysis Internet-Scale Convergence? Computing **Mixing simulation** with real-world data **Modeling &** Simulation-Driven Science & **Traditional** Engineering **Supercomputing Computational Intensity**

Challenges for Convergence

Supercomputers

Data Center Clusters

Hardware

- Customized
- Optimized for reliability

- Consumer grade
- Optimized for low cost

Run-Time System

- Source of "noise"
- Static scheduling

- Provides reliability
- Dynamic allocation

Application Programming

Low-level, processorcentric model High level, data-centric model

Summary: Computation/Data Convergence

Two Important Classes of Large-Scale Computing

- Computationally intensive supercomputing
- Data intensive processing
 - Internet companies + many other applications

Followed Different Evolutionary Paths

- Supercomputers: Get maximum performance from available hardware
- Data center clusters: Maximize cost/performance over variety of datacentric tasks
- Yielded different approaches to hardware, runtime systems, and application programming

A Convergence Would Have Important Benefits

- Computational and data-intensive applications
- But, not clear how to do it