Thread-Level Parallelism

15-213: Introduction to Computer Systems 26th Lecture, November 29, 2016

Instructor:

Phil Gibbons

Today

Parallel Computing Hardware

- Multicore
 - Multiple separate processors on single chip
- Hyperthreading
 - Efficient execution of multiple threads on single core

Thread-Level Parallelism

- Splitting program into independent tasks
 - Example 1: Parallel summation
- Divide-and conquer parallelism
 - Example 2: Parallel quicksort

Consistency Models

What happens when multiple threads are reading & writing shared state

Exploiting parallel execution

- So far, we've used threads to deal with I/O delays
 - e.g., one thread per client to prevent one from delaying another
- Multi-core/Hyperthreaded CPUs offer another opportunity
 - Spread work over threads executing in parallel
 - Happens automatically, if many independent tasks
 - e.g., running many applications or serving many clients
 - Can also write code to make one big task go faster
 - by organizing it as multiple parallel sub-tasks

Typical Multicore Processor

Multiple processors operating with coherent view of memory

Out-of-Order Processor Structure

- Instruction control dynamically converts program into stream of operations
- Operations mapped onto functional units to execute in parallel

Hyperthreading Implementation

- Replicate instruction control to process K instruction streams
- K copies of all registers
- Share functional units

Benchmark Machine

- Get data about machine from /proc/cpuinfo
- Shark Machines
 - Intel Xeon E5520 @ 2.27 GHz
 - Nehalem, ca. 2010
 - 8 Cores
 - Each can do 2x hyperthreading

Example 1: Parallel Summation

- Sum numbers *0, ..., n-1*
 - Should add up to ((n-1)*n)/2
- Partition values 1, ..., n-1 into t ranges
 - $\lfloor n/t \rfloor$ values in each range
 - Each of t threads processes 1 range
 - For simplicity, assume n is a multiple of t
- Let's consider different ways that multiple threads might work on their assigned ranges in parallel

First attempt: psum-mutex

Simplest approach: Threads sum into a global variable protected by a semaphore mutex.

```
void *sum mutex(void *varqp); /* Thread routine */
/* Global shared variables */
long gsum = 0; /* Global sum */
long nelems per thread; /* Number of elements to sum */
int main(int argc, char **argv)
   long i, nelems, log nelems, nthreads, myid[MAXTHREADS];
   pthread t tid[MAXTHREADS];
    /* Get input arguments */
   nthreads = atoi(argv[1]);
   log nelems = atoi(argv[2]);
   nelems = (1L << log nelems);</pre>
   nelems per thread = nelems / nthreads;
   sem init(&mutex, 0, 1);
                                              psum-mutex.c
```

psum-mutex (cont)

Simplest approach: Threads sum into a global variable protected by a semaphore mutex.

```
Thread routine
                                        Thread ID
/* Create peer threads and wait for them to finish
for (i = 0; i < nthreads; i+f</pre>
    myid[i] = i;
    Pthread create(&tid[i], NULL, sum mutex, &myid[i]);
for (i = 0; i < nthreads; i++)</pre>
                                                     Thread arguments
   Pthread join(tid[i], NULL);
                                                         (void *p)
/* Check final answer */
if (gsum != (nelems * (nelems-1))/2)
    printf("Error: result=%ld\n", qsum);
return 0;
                                                    psum-mutex.c
```

psum-mutex Thread Routine

Simplest approach: Threads sum into a global variable protected by a semaphore mutex.

```
Thread routine for psum-mutex.c */
void *sum mutex(void *varqp)
   long start = myid * nelems per thread; /* Start element index */
   long end = start + nelems per thread; /* End element index */
   long i;
   for (i = start; i < end; i++) {</pre>
      P(&mutex);
      gsum += i;
      V(&mutex);
   return NULL:
```

psum-mutex Performance

■ Shark machine with 8 cores, n=2³¹

Threads (Cores)	1 (1)	2 (2)	4 (4)	8 (8)	16 (8)
psum-mutex (secs)	51	456	790	536	681

Nasty surprise:

- Single thread is very slow
- Gets slower as we use more cores

Next Attempt: psum-array

- Peer thread i sums into global array element psum[i]
- Main waits for theads to finish, then sums elements of psum
- Eliminates need for mutex synchronization

psum-array Performance

Orders of magnitude faster than psum-mutex

Next Attempt: psum-local

 Reduce memory references by having peer thread i sum into a local variable (register)

```
/* Thread routine for psum-local.c */
void *sum local(void *vargp)
   long start = myid * nelems per thread; /* Start element index */
   long end = start + nelems per thread; /* End element index */
   long i, sum = 0;
   for (i = start; i < end; i++) {</pre>
      sum += i;
   psum[myid] = sum;
   return NULL;
                                                  psum-local.c
```

psum-local Performance

Significantly faster than psum-array

Characterizing Parallel Program Performance

- \blacksquare p processor cores, T_k is the running time using k cores
- Def. Speedup: $S_p = T_1 / T_p$
 - S_p is *relative speedup* if T_1 is running time of parallel version of the code running on 1 core
 - S_p is absolute speedup if T_1 is running time of sequential version of code running on 1 core
 - Absolute speedup is a much truer measure of the benefits of parallelism
- Def. Efficiency: $E_p = S_p / p = T_1 / (pT_p)$
 - Reported as a percentage in the range (0, 100)
 - Measures the overhead due to parallelization
- Is super-linear speed-up ($S_p > p$, $E_p > 100%$) possible?
 - Yes: Due to hyperthreading and cache effects

Performance of psum-local

Threads (t)	1	2	4	8	16
Cores (p)	1	2	4	8	8
Running time (T_p)	1.98	1.14	0.60	0.32	0.33
Speedup (S_p)	1	1.74	3.30	6.19	6.00
Efficiency (E_p)	100%	87%	82%	77%	75%

- Efficiencies OK, not great
- Our example is easily parallelizable
- Real codes are often much harder to parallelize
 - e.g., parallel quicksort later in this lecture

Amdahl's Law

- Gene Amdahl (Nov. 16, 1922 Nov. 10, 2015)
- Captures the difficulty of using parallelism to speed things up.
- Overall problem
 - T Total sequential time required
 - p Fraction of total that can be sped up $(0 \le p \le 1)$
 - k Speedup factor

Resulting Performance

- $T_k = pT/k + (1-p)T$
 - Portion which can be sped up runs k times faster
 - Portion which cannot be sped up stays the same
- Least possible running time:
 - $k = \infty$
 - $T_{\infty} = (1-p)T$

Amdahl's Law Example

Overall problem

- T = 10 Total time required
- p = 0.9 Fraction of total which can be sped up
- k = 9 Speedup factor

Resulting Performance

- $T_{q} = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0$
- Least possible running time:

$$T_{\infty} = 0.1 * 10.0 = 1.0$$

- Limit on *strong scaling*: fixed problem size, increasing cores
- Not on weak scaling: problem size scales with increasing cores

A More Substantial Example: Sort

- Sort set of N random numbers
- Multiple possible algorithms
 - Use parallel version of quicksort
- Sequential quicksort of set of values X
 - Choose "pivot" p from X
 - Rearrange X into
 - L: Values ≤ p (when value=p, break tie by array index)
 - R: Values \geq p
 - Recursively sort L to get L'
 - Recursively sort R to get R'
 - Return L' : p : R'

Sequential Quicksort Visualized

Sequential Quicksort Visualized

Sequential Quicksort Code

```
void qsort serial(data t *base, size t nele) {
  if (nele <= 1)
    return;
  if (nele == 2) {
    if (base[0] > base[1])
      swap(base, base+1);
    return;
  }
  /* Partition returns index of pivot */
  size t m = partition(base, nele);
  if (m > 1)
   qsort serial(base, m);
  if (nele-1 > m+1)
   qsort serial(base+m+1, nele-m-1);
```

Sort nele elements starting at base

Recursively sort L or R if has more than one element

Parallel Quicksort

Parallel quicksort of set of values X of size N

- If N ≤ Nthresh, do sequential quicksort
- Else
 - Choose "pivot" p from X
 - Rearrange X into
 - L: Values \leq p
 - R: Values ≥ p
 - Recursively spawn separate threads
 - Sort L to get L'
 - Sort R to get R'
 - Return L' : p : R'

Parallel Quicksort Visualized

Thread Structure: Sorting Tasks

Task Threads

- Task: Sort subrange of data
 - Specify as:
 - base: Starting address
 - nele: Number of elements in subrange
- Run as separate thread

Small Sort Task Operation

Sort subrange using serial quicksort

Large Sort Task Operation

Top-Level Function (Simplified)

```
void tqsort(data_t *base, size_t nele) {
    init_task(nele);
    global_base = base;
    global_end = global_base + nele - 1;
    task_queue_ptr tq = new_task_queue();
    tqsort_helper(base, nele, tq);
    join_tasks(tq);
    free_task_queue(tq);
}
```

- Sets up data structures
- Calls recursive sort routine
- Keeps joining threads until none left
- Frees data structures

Recursive sort routine (Simplified)

- Small partition: Sort serially
- Large partition: Spawn new sort task

Sort task thread (Simplified)

```
/* Thread routine for many-threaded quicksort */
static void *sort thread(void *vargp) {
    sort task t *t = (sort task t *) vargp;
    data t *base = t->base;
    size t nele = t->nele;
    task queue ptr tq = t->tq;
    free (varqp);
    size t m = partition(base, nele);
    if (m > 1)
       tqsort helper(base, m, tq);
    if (nele-1 > m+1)
        tqsort helper(base+m+1, nele-m-1, tq);
    return NULL;
```

- Get task parameters
- Perform partitioning step
- Call recursive sort routine on each partition

Parallel Quicksort Performance

- Serial fraction: Fraction of input at which do serial sort
- Sort 2²⁷ (134,217,728) random values
- Best speedup = 6.84X

Parallel Quicksort Performance

Good performance over wide range of fraction values

- F too small: Not enough parallelism
- F too large: Thread overhead + run out of thread memory

Amdahl's Law & Parallel Quicksort

Sequential bottleneck

- Top-level partition: No speedup
- Second level: ≤ 2X speedup
- k^{th} level: $\leq 2^{k-1}X$ speedup

Implications

- Good performance for small-scale parallelism
- Would need to parallelize partitioning step to get large-scale parallelism
 - Parallel Sorting by Regular Sampling
 - H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 1992

Parallelizing Partitioning Step

Experience with Parallel Partitioning

- Could not obtain speedup
- Speculate: Too much data copying
 - Could not do everything within source array
 - Set up temporary space for reassembling partition

Lessons Learned

Must have parallelization strategy

- Partition into K independent parts
- Divide-and-conquer

Inner loops must be synchronization free

Synchronization operations very expensive

Beware of Amdahl's Law

Serial code can become bottleneck

You can do it!

- Achieving modest levels of parallelism is not difficult
- Set up experimental framework and test multiple strategies

Today

Parallel Computing Hardware

- Multicore
 - Multiple separate processors on single chip
- Hyperthreading
 - Efficient execution of multiple threads on single core

Thread-Level Parallelism

- Splitting program into independent tasks
 - Example 1: Parallel summation
- Divide-and conquer parallelism
 - Example 2: Parallel quicksort

Consistency Models

What happens when multiple threads are reading & writing shared state

Memory Consistency

Thread consistency constraints
Wa → Rb
Wb → Ra

What are the possible values printed?

- Depends on memory consistency model
- Abstract model of how hardware handles concurrent accesses

Sequential consistency

- Overall effect consistent with each individual thread
- Otherwise, arbitrary interleaving

Sequential Consistency Example

- Impossible outputs
 - 100, 1 and 1, 100
 - Would require reaching both Ra and Rb before Wa and Wb

Non-Coherent Cache Scenario

Write-back caches, without coordination between them

print 1

print 100

Snoopy Caches

Tag each cache block with state

Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Snoopy Caches

Tag each cache block with state

Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

print 2

print 200

- When cache sees request for one of its E-tagged blocks
 - Supply value from cache
 - Set tag to S

Non-Sequentially Consistent Scenario

 Thread consistency constraints violated due to out-of-order execution

print 1

print 100

■ Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra

Recap

Parallel Computing Hardware

- Multicore
 - Multiple separate processors on single chip
- Hyperthreading
 - Efficient execution of multiple threads on single core

Thread-Level Parallelism

- Splitting program into independent tasks
 - Example 1: Parallel summation
- Divide-and conquer parallelism
 - Example 2: Parallel quicksort

Consistency Models

What happens when multiple threads are reading & writing shared state