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Today

 Parallel  Computing Hardware
 Multicore

 Multiple separate processors on single chip

 Hyperthreading

 Efficient execution of multiple threads on single core

 Thread-Level Parallelism
 Splitting program into independent tasks

 Example 1: Parallel summation

 Divide-and conquer parallelism

 Example 2: Parallel quicksort

 Consistency Models
 What happens when multiple threads are reading & writing shared 

state



Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exploiting parallel execution

 So far, we’ve used threads to deal with I/O delays

 e.g., one thread per client to prevent one from delaying another

 Multi-core/Hyperthreaded CPUs offer another 
opportunity

 Spread work over threads executing in parallel

 Happens automatically, if many independent tasks

 e.g., running many applications or serving many clients

 Can also write code to make one big task go faster

 by organizing it as multiple parallel sub-tasks
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Typical Multicore Processor

 Multiple processors operating with coherent view of memory
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Out-of-Order Processor Structure

 Instruction control dynamically converts program into stream 
of operations

 Operations mapped onto functional units to execute in parallel
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Hyperthreading Implementation

 Replicate instruction control to process K instruction streams

 K copies of all registers

 Share functional units

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control

Reg B

Instruction 
Decoder

Op. Queue B

Data Cache

Instruction
CacheReg A Op. Queue A

PC A
PC B



Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Benchmark Machine

 Get data about machine from /proc/cpuinfo

 Shark Machines
 Intel Xeon E5520 @ 2.27 GHz

 Nehalem, ca. 2010

 8 Cores

 Each can do 2x hyperthreading
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Example 1: Parallel Summation

 Sum numbers 0, …, n-1
 Should add up to ((n-1)*n)/2

 Partition values 1, …, n-1 into t ranges
 ⌊𝑛/𝑡⌋ values in each range

 Each of t threads processes 1 range 

 For simplicity, assume n is a multiple of t

 Let’s consider different ways that multiple threads might 
work on their assigned ranges in parallel
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First attempt: psum-mutex

 Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.

void *sum_mutex(void *vargp); /* Thread routine */

/* Global shared variables */

long gsum = 0;           /* Global sum */

long nelems_per_thread;  /* Number of elements to sum */

sem_t mutex;             /* Mutex to protect global sum */

int main(int argc, char **argv)

{

long i, nelems, log_nelems, nthreads, myid[MAXTHREADS];

pthread_t tid[MAXTHREADS];

/* Get input arguments */

nthreads = atoi(argv[1]);

log_nelems = atoi(argv[2]);

nelems = (1L << log_nelems);

nelems_per_thread = nelems / nthreads;

sem_init(&mutex, 0, 1); psum-mutex.c



Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

psum-mutex (cont)

/* Create peer threads and wait for them to finish */

for (i = 0; i < nthreads; i++) {

myid[i] = i;                                  

Pthread_create(&tid[i], NULL, sum_mutex, &myid[i]); 

}

for (i = 0; i < nthreads; i++)

Pthread_join(tid[i], NULL);                   

/* Check final answer */

if (gsum != (nelems * (nelems-1))/2)

printf("Error: result=%ld\n", gsum); 

return 0;

} psum-mutex.c

 Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.

Thread ID Thread routine

Thread arguments
(void *p) 
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psum-mutex Thread Routine

 Simplest approach: Threads sum into a global variable 
protected by a semaphore mutex.

/* Thread routine for psum-mutex.c */

void *sum_mutex(void *vargp)

{

long myid = *((long *)vargp);          /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread;  /* End element index */

long i;

for (i = start; i < end; i++) {        

P(&mutex);                     

gsum += i;                     

V(&mutex);                     

}

return NULL;

} psum-mutex.c
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psum-mutex Performance

 Shark machine with 8 cores,  n=231

Threads (Cores) 1 (1) 2 (2) 4 (4) 8 (8) 16 (8)

psum-mutex (secs) 51 456 790 536 681

 Nasty surprise:
 Single thread is very slow

 Gets slower as we use more cores
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Next Attempt: psum-array

 Peer thread i sums into global array element psum[i]

 Main waits for theads to finish, then sums elements of psum

 Eliminates need for mutex synchronization

/* Thread routine for psum-array.c */

void *sum_array(void *vargp)       

{

long myid = *((long *)vargp);          /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread;  /* End element index */

long i;

for (i = start; i < end; i++) {

psum[myid] += i;

}

return NULL; 

} psum-array.c
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psum-array Performance

 Orders of magnitude faster than psum-mutex
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Next Attempt: psum-local

 Reduce memory references by having peer thread i sum 
into a local variable (register)

/* Thread routine for psum-local.c */

void *sum_local(void *vargp)

{

long myid = *((long *)vargp);          /* Extract thread ID */

long start = myid * nelems_per_thread; /* Start element index */

long end = start + nelems_per_thread;  /* End element index */

long i, sum = 0;

for (i = start; i < end; i++) {        

sum += i;                          

}

psum[myid] = sum;

return NULL;

} psum-local.c
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psum-local Performance

 Significantly faster than psum-array
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Characterizing Parallel Program Performance

 p processor cores, Tk is the running time using k cores

 Def. Speedup:  Sp = T1 / Tp

 Sp is  relative speedup if T1 is running time of parallel version of the code 
running on 1 core

 Sp is  absolute speedup  if T1 is running time of sequential version of code 
running on 1 core

 Absolute speedup is a much truer measure of the benefits of parallelism 

 Def.  Efficiency: Ep = Sp /p = T1 /(pTp)
 Reported as a percentage in the range (0, 100]

 Measures the overhead due to parallelization

 Is super-linear speed-up (Sp > p, Ep > 100%) possible?
 Yes: Due to hyperthreading and cache effects
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Performance of psum-local

Threads (t) 1 2 4 8 16

Cores (p) 1 2 4 8 8

Running time (Tp) 1.98 1.14 0.60 0.32 0.33

Speedup (Sp) 1 1.74 3.30 6.19 6.00

Efficiency (Ep) 100% 87% 82% 77% 75%

 Efficiencies OK, not great

 Our example is easily parallelizable

 Real codes are often much harder to parallelize
 e.g., parallel quicksort later in this lecture
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Amdahl’s Law

 Gene Amdahl (Nov. 16, 1922 – Nov. 10, 2015)

 Captures the difficulty of using parallelism to speed things up.

 Overall problem
 T Total sequential time required

 p Fraction of total that can be sped up (0  p   1)

 k Speedup factor

 Resulting Performance
 Tk = pT/k + (1-p)T

 Portion which can be sped up runs k times faster

 Portion which cannot be sped up stays the same

 Least possible running time:

 k = 

 T = (1-p)T



Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Amdahl’s Law Example

 Overall problem
 T = 10 Total time required

 p = 0.9 Fraction of total which can be sped up

 k = 9 Speedup factor

 Resulting Performance
 T9 = 0.9 * 10/9 + 0.1 * 10 = 1.0 + 1.0 = 2.0

 Least possible running time:

 T = 0.1 * 10.0 = 1.0

 Limit on strong scaling: fixed problem size, increasing cores

 Not on weak scaling: problem size scales with increasing cores 
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A More Substantial Example: Sort

 Sort set of N random numbers

 Multiple possible algorithms
 Use parallel version of quicksort

 Sequential quicksort of set of values X
 Choose “pivot” p from X

 Rearrange X into

 L: Values ≤ p        (when value=p, break tie by array index)

 R: Values  p

 Recursively sort L to get L

 Recursively sort R to get R

 Return L : p : R
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Sequential Quicksort Visualized
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Sequential Quicksort Visualized
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Sequential Quicksort Code

 Sort nele elements starting at base
 Recursively sort L or R if has more than one element

void qsort_serial(data_t *base, size_t nele) {

if (nele <= 1)

return;

if (nele == 2) {

if (base[0] > base[1])

swap(base, base+1);

return;

}

/* Partition returns index of pivot */

size_t m = partition(base, nele);

if (m > 1)

qsort_serial(base, m);

if (nele-1 > m+1)

qsort_serial(base+m+1, nele-m-1);

}
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Parallel Quicksort

 Parallel quicksort of set of values X of size N

 If N  Nthresh, do sequential quicksort

 Else

 Choose “pivot” p from X

 Rearrange X into

– L: Values  p

– R: Values  p

 Recursively spawn separate threads

– Sort L to get L

– Sort R to get R

 Return L : p : R
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Parallel Quicksort Visualized
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Thread Structure: Sorting Tasks

 Task: Sort subrange of data
 Specify as:

 base: Starting address

 nele: Number of elements in subrange

 Run as separate thread

X

  

Task Threads
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Small Sort Task Operation

 Sort subrange using serial quicksort

X

  

Task Threads
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Large Sort Task Operation

X
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Top-Level Function (Simplified)

 Sets up data structures

 Calls recursive sort routine

 Keeps joining threads until none left

 Frees data structures

void tqsort(data_t *base, size_t nele) {

init_task(nele);

global_base = base;

global_end = global_base + nele - 1;

task_queue_ptr tq = new_task_queue();

tqsort_helper(base, nele, tq);

join_tasks(tq);

free_task_queue(tq);

}
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Recursive sort routine (Simplified)

 Small partition: Sort serially

 Large partition: Spawn new sort task

/* Multi-threaded quicksort */

static void tqsort_helper(data_t *base, size_t nele,

task_queue_ptr tq) {

if (nele <= nele_max_sort_serial) {

/* Use sequential sort */

qsort_serial(base, nele);

return;

}

sort_task_t *t = new_task(base, nele, tq);

spawn_task(tq, sort_thread, (void *) t);

}
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Sort task thread (Simplified)

 Get task parameters

 Perform partitioning step

 Call recursive sort routine on each partition

/* Thread routine for many-threaded quicksort */

static void *sort_thread(void *vargp) {

sort_task_t *t = (sort_task_t *) vargp;

data_t *base = t->base;

size_t nele = t->nele;

task_queue_ptr tq = t->tq;

free(vargp);

size_t m = partition(base, nele);

if (m > 1)

tqsort_helper(base, m, tq);

if (nele-1 > m+1)

tqsort_helper(base+m+1, nele-m-1, tq);

return NULL;

}
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Parallel Quicksort Performance

 Serial fraction: Fraction of input at which do serial sort

 Sort 227 (134,217,728) random values

 Best speedup = 6.84X
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Parallel Quicksort Performance

 Good performance over wide range of fraction values
 F too small: Not enough parallelism

 F too large: Thread overhead + run out of thread memory
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Amdahl’s Law & Parallel Quicksort

 Sequential bottleneck
 Top-level partition: No speedup

 Second level:  2X speedup

 kth level:   2k-1X speedup

 Implications
 Good performance for small-scale parallelism

 Would need to parallelize partitioning step to get large-scale 
parallelism

 Parallel Sorting by Regular Sampling

– H. Shi & J. Schaeffer, J. Parallel & Distributed Computing, 
1992
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Parallelizing Partitioning Step

p

L1 R1

X1 X2 X3 X4

L2 R2 L3 R3 L4 R4

Parallel partitioning based on global p

L1 R1L2 R2L3 R3L4 R4

Reassemble into partitions
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Experience with Parallel Partitioning

 Could not obtain speedup

 Speculate: Too much data copying
 Could not do everything within source array

 Set up temporary space for reassembling partition
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Lessons Learned

 Must have parallelization strategy
 Partition into K independent parts

 Divide-and-conquer

 Inner loops must be synchronization free
 Synchronization operations very expensive

 Beware of Amdahl’s Law
 Serial code can become bottleneck

 You can do it!
 Achieving modest levels of parallelism is not difficult

 Set up experimental framework and test multiple strategies
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Today

 Parallel  Computing Hardware
 Multicore

 Multiple separate processors on single chip

 Hyperthreading

 Efficient execution of multiple threads on single core

 Thread-Level Parallelism
 Splitting program into independent tasks

 Example 1: Parallel summation

 Divide-and conquer parallelism

 Example 2: Parallel quicksort

 Consistency Models
 What happens when multiple threads are reading & writing shared 

state
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Memory Consistency

 What are the possible values printed?
 Depends on memory consistency model

 Abstract model of how hardware handles concurrent accesses 

 Sequential consistency
 Overall effect consistent with each individual thread

 Otherwise, arbitrary interleaving

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

Wa Rb

Wb Ra

Thread consistency
constraints
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Sequential Consistency Example

 Impossible outputs
 100, 1 and 1, 100

 Would require reaching both Ra and Rb before Wa and Wb

Wa

Rb Wb Ra

Wb
Rb Ra

Ra Rb

Wb

Ra Wa Rb

Wa
Ra Rb

Rb Ra

100, 2

200, 2

2, 200

1, 200

2, 200

200, 2

Wa Rb

Wb Ra

Thread consistency
constraints

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Non-Coherent Cache Scenario

 Write-back caches, without 
coordination between them

Main Memory

a:1 b:100

Thread1 Cache

a:2

Thread2 Cache

b:200a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);
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Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a:2E

b:200E

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

T1 T2
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Snoopy Caches

 Tag each cache block with state
Invalid Cannot use value

Shared Readable copy

Exclusive Writeable copy

Main Memory

a:1 b:100

Thread1 Cache Thread2 Cache

a:2E

b:200E
print 200

b:200S b:200S

print 2a:2Sa:2S

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 When cache sees request for 
one of its E-tagged blocks

 Supply value from cache

 Set tag to S

T1 T2S a:2 b:200S
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Non-Sequentially Consistent Scenario

 Thread consistency 
constraints violated due to 
out-of-order execution

Main Memory

a:1 b:100

Thread1 Cache

a:2

Thread2 Cache

b:200

a:1 print 1b:100

print 100

int a = 1;
int b = 100;

Thread1:
Wa: a = 2;
Rb: print(b);

Thread2:
Wb: b = 200;
Ra: print(a);

 Fix: Add SFENCE instructions between Wa & Rb and Wb & Ra



Carnegie Mellon

46Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recap

 Parallel  Computing Hardware
 Multicore

 Multiple separate processors on single chip

 Hyperthreading

 Efficient execution of multiple threads on single core

 Thread-Level Parallelism
 Splitting program into independent tasks

 Example 1: Parallel summation

 Divide-and conquer parallelism

 Example 2: Parallel quicksort

 Consistency Models
 What happens when multiple threads are reading & writing shared 

state


