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Today

m Cache memory organization and operation
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Locality

m Principle of Locality: Programs tend to use data and
instructions with addresses near or equal to those they
have used recently

m Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

C /

m Spatial locality:

" |tems with nearby addresses tend
to be referenced close together in time
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Example Memory
» Hierarchy ey -

CPU registers hold words retrieved

Smaller, from the L1 cache.
faster, L1: L1 cache
and (SRAM) L1 cache holds cache lines retrieved
costlier . L2 cache from the L2 cache.
(per byte) L2: (SRAM)
storage L2 cache holds cache lines
devices retrieved from L3 cache

L3: L3 cache

(SRAM)

L3 cache holds cache lines
retrieved from main memory.

Larger,

slower, L4: Main memory

and (DRAM) Main memory holds disk
cheaper blocks retrieved from local
(per byte) disks.

storage 5. Local secondary storage

devices (local disks)

Local disks hold files
v retrieved from disks
on remote servers

L6: Remote secondary storage
(e.g., Web servers)
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General Cache Concepts
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Everything handled in hardware. Invisible to programmer

Cache

Memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Smaller, faster, more expensive
memory caches a subset of
the blocks

Larger, slower, cheaper memory
viewed as partitioned into “blocks”

4 9 10 3
Data is copied in block-sized
10 transfer units
1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
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General Cache Concepts: Hit

Request: 14 Data in block b is needed
Cach 2 5 12 3 Block b is in cache:
ache Hit!
Memory 0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15
00000000000 OCOCGOGEOOSOIOS
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General Cache Concepts: Miss

Cache

Memory
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Request: 12

8 12 14 3
12 Request: 12

1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)
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General Caching Concepts:
Types of Cache Misses

m Cold (compulsory) miss
= Cold misses occur because the cache is empty.

m Conflict miss

" Most caches limit blocks at level k+1 to a small subset (sometimes a
singleton) of the block positions at level k.

= E.g. Blockiat level k+1 must be placed in block (i mod 4) at level k.

= Conflict misses occur when the level k cache is large enough, but multiple
data objects all map to the same level k block.

= E.g. Referencing blocks 0, 8, 0, 8, 0, 8, ... would miss every time.
m Capacity miss

= QOccurs when the set of active cache blocks (working set) is larger than
the cache.
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Cache Memories

m Cache memories are small, fast SRAM-based memories
managed automatically in hardware

= Hold frequently accessed blocks of main memory
m CPU looks first for data in cache
m Typical system structure:

CPU chip

Register file

Cache <—> X Y ALU
memory

@ System bus  Memory bus

T T

ain

usintertace K| Vo KT ma

bridge memory
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What it Really Looks Like

CPU chip

D k Pc Register file
esktop

Cache <:> |:,,> ALU
memory

ﬁ : }stem bus  Memory bus
T C—
bridge memory

/

Bus interface

CPU (Intel Core i7)

Source: Dell 4th Gen
Intel® Core™ i7

Processor

Graphics

gL UL Lo 1 -1
'S FarE ol T |
Fes tfﬂéﬂfﬁ g-w%ﬁ o |
= Core s Core &= Core 4= Core 4 ;qe T
¥ o
a
. i = J 4

—— B Memory Controller /0 S ¥

Source: techreport.com

Source: Dell
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What it ReaIIy Looks Like (Cont.)

i .7 CPU chip
Register file
Cache ALU
memory
ﬁ System bus Memory bus
- i ™
Bus interface './o <:::> ain
bridge memory

Intel Sandy Bridge
Processor Die

L1: 32KB Instruction + 32KB Data
L2: 256KB
L3: 3-20MB
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Recap from Lecture 10:

Modern CPU Design

Instruction Control

................................ >
Address
R > Instruction
Register . _Instructions Cache
> File D
Operations
Register Updates : Prediction OK?
\ 4
Functional
Units
A A A A A A a
\ 4 \ 4 A 4 A 4 A 4 A 4
Operation Results
Addr. Addr.
Data Data

Execution
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General Cache Organization (S, E, B)

E = 2¢ lines per set

A
'd N\
4 «—
TR —
eoooe
S=Zssets< ecooe

\.
Cache size:
v tag olil2] - B1 C =S x E x B data bytes
T N— _J
. . V
valid bit B = 2° bytes per cache block (the data)
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* Locate set
CaChe Read * Check if any line in set

has matching tag

E = 2¢ lines per set * Yes + line valid: hit
s A ~ * Locate data starting
4 at offset
o000

Address of word:
t bits s bits | b bits

H_H_W
S=2-°'sets< ecooe

tag set block

index offset

000000 00000O0OCOGDEOGOGOEOEOGOEOGOEOSOEOOSOOSOOOFO
o000
\.
data begins at this offset
v tag 0112 <" B-1
valid bit S~ ~— —

B = 2° bytes per cache block (the data)
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

4 . olil213121:1e1> Address of int:
Y 28 tbits | 0..01 | 100

v tag 0]112)13|4]|5]|6]7

find set
S=2$sets<
v tag 0]112)13|4]|5]|6]7
00000000 O0DOGCEOGOEOEOEOOEOGOOSONOSOOO
v tag 011]21314\|5]|6}|7
\.
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0|j1]2]|3|4]|5]|6]|7

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16
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Example: Direct Mapped Cache (E = 1)

Direct mapped: One line per set
Assume: cache block size 8 bytes

Address of int:
t bits 0..01 | 100

valid? + match: assume yes = hit

v tag 0|1]2]|3|4]|5]|6]|7

block offset

int (4 Bytes) is here

If tag doesn’t match: old line is evicted and replaced

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17
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Direct-Mapped Cache Simulation

t=1 s=2 b=l M=16 bytes (4-bit addresses), B=2 bytes/block,
X XX X S=4 sets, E=1 Blocks/set

Address trace (reads, one byte per read):

0 [0000,], miss
1 [0001,], hit

7 [0111,], miss
8 [1000,], miss
0 [0000,] miss

v Tag Block

SetO0 | 1 0 M[0-1]
Setl
Set 2
Set3| 1 | 0 M[6-7]
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes
Address of short int:

2 lines per set t bits 0..01 | 100

v| | tag | [of1]2{3]als]6l7]| |[v] [ tag ] [0]2]2]3]4]5]6]7

v| [ tag | [ola]2]3]a]5]6]7]]| |[v] [ teg ] o]2]2]3]a]s5]6]7 find set

v| | tag | [of1]2{3]als]6l7]| |[v] [ tag ] [0]2]2]3]4]5]6]7

v| | tag | lof1]2|3]als]6l7]| |[v] [ tag ] [0]2]2]3]4]5]6]7

S sets
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| [ tag | |of1]2{3]afs]6l7]| ||v] [ tag ] [0]2]2]3]4]5]6]7

block offset

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20
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E-way Set Associative Cache (Here: E = 2)

E = 2: Two lines per set

Assume: cache block size 8 bytes Address of short int:

t bits 0..01 | 100

compare both

valid? + | match: yes = hit

v| |_tag | [of1]2{3]afs]67]| |[v] [ tag ] [0]2]2]3]4]5]6]7

block offset
short int (2 Bytes) is here
No match:

* Onelinein set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21
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2-Way Set Associative Cache Simulation

t=2

s=1

b

1

XX

X

X

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

M=16 byte addresses, B=2 bytes/block,
S=2 sets, E=2 blocks/set

Address trace (reads, one byte per read):

0
1
7
8
0

\'}

Tag

[0000,],
[0001,],
[0111,],
[1000,],
[0000,]

Block

00

M[O-1]

Set 0 |1

10

M[8-9]

01

M[6-7]

Set1

miss
hit

miss

miss
hit

22
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What about writes?

m Multiple copies of data exist:
= |1, L2, L3, Main Memory, Disk
m What to do on a write-hit?

= Write-through (write immediately to memory)
= Write-back (defer write to memory until replacement of line)
= Need a dirty bit (line different from memory or not)

m What to do on a write-miss?
= Write-allocate (load into cache, update line in cache)
= Good if more writes to the location follow
= No-write-allocate (writes straight to memory, does not load into cache)
m Typical

= Write-through + No-write-allocate
= Write-back + Write-allocate

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23
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Why Index Using Middle Bits?

Direct mapped: One line per set
Assume: cache block size 8 bytes

/Standard Method: \
Middle bit indexing
4 Address of int:
v | teg | [0f1]2]3]4]5]6]7 tbits | 0..01 | 100
v tag 0]112)13|4]|5]|6]7 :
find set /
S$=2°5 sets<
Y tag 01112]13]4]5]6])7 /Alternative Method: \
High bit indexing
OO0 0000000000 OCEOGEOGOEOEOGOEOSTOSOO
Address of int:
Vv tag 01112]|314|5]|6]|7 1..11 t bits 100
\.
find set

\_ J
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lllustration of Indexing 0000xx
Approaches P001xx
0010xx

m 64-byte memory 00115x

= 6-bit addresses

0100xx

m 16 byte, direct-mapped cache 0101xx
m Block size = 4 (4 sets) 011053
m 2 bits tag, 2 bits index, 2 bits offset 0111xx
1000xx

1001xx

Set0 1010xx

Set1l 1011xx

Set 2 1100xx

Set 3 1101xx

1110xx

1111xx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25
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Middle Bit Indexing

m Addresses of form TTSSBB

= TT Tag bits
= SS Set index bits
= BB Offset bits

m Makes good use of spatial locality

Set 0

Set1l

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx
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High Bit Indexing

m Addresses of form SSTTBB

= SS Set index bits
= TT Tag bits
= BB Offset bits

m Program with high spatial locality
would generate lots of conflicts

Set 0

Set1l

Set 2

Set 3

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0000xx
0001xx
0010xx
0011xx
0100xx
0101xx
0110xx
0111xx
1000xx
1001xx
1010xx
1011xx
1100xx
1101xx
1110xx
1111xx
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Intel Core i7 Cache Hierarchy

Processor package

L2 unified cache

Core 0 Core 3
Regs Regs
L1 L1 L1 L1
d-cache| |i-cache d-cache| |i-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

L1 i-cache and d-cache:
32 KB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KB, 8-way,
Access: 10 cycles

L3 unified cache:
8 MB, 16-way,
Access: 40-75 cycles

Block size: 64 bytes for
all caches.

28
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Example: Core i7 L1 Data Cache

N
>
&
N
L E = 2¢ lines per set \2\6‘- 000 0\(\
32 kB 8-way set associative e = S 0 [0 [ 0000
64 bytes/block [ | o oo = % % 83{1%
47 bit address range | | oo | 3 |3 ]0011
4 [ 4 [0100
S=255ets< I II Iooool I 5 5 0101
= 6 | 6 | 0110
_ _ 00000 CPOCOOOOIONOIONOOINONOEOEOEOEOEPONPONORNTPODS l7 '7 0111
5= ,5 | I oo | 8 |8 11000
= e= . 9 19 1001
’ A [10] 1010
C= Cache size: B |11 1011
~ 1lolil2] v - C =S x E x B data bytes C |12 | 1100
[v] [t ] [ofs]2] - ]o1] o113 1101
I_c"b_ — E |14 | 1110
validbit F |15 1111
Address of word:
| t bits | s bits |bbits|
—
tag set block
index offset Stack Address: Block offset: 0x??
0x00007£7262ale010 Set index: 0x??
Block offset: . bits Tag: 0x??

Set index: . bits
Tag: . bits

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29
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Example: Core i7 L1 Data Cache

\
& S
E = 2¢ lines per set \2\6‘- 000\6\(\@
32 kB 8-way set associative e S 0 [0 [ 0000
64 bytes/block I | o oo = % % 83%
47 bit address range | | oo | 3 2 8‘13(133
_ s=2sets< | | Joeee] l 5 |5 | 0101
B=64 6 | 6 | 0110
S=64’S=6 LK B B B B B K B BN N N N N N ) LR N N N N N N N N ] LN J |7 '7 0111
E=8,e=3 [ J ool ' 5o T1001
10 | 1010
C=64x64x8=32,768 . e Tt
= data b C |12 ] 1100
L_‘%_]I we | [0]1]2] =1 C =S5 x E x B data bytes 151101
valid bit W—/ E 14 | 1110
F |15 1111
Address of word:
| t bits | s bits |bbits|
— A A
t t block
% i::ex of:;t Stack Address: Block offset: 0x10
0x00007£f7262al1le010 Set index: 0x0
Block offset: 6 bits Tag: 0x7£f7262ale
Set index: 6 bits
Tag: 35 bits 0000 0001 o00O0O0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30
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Cache Performance Metrics

m Miss Rate
" Fraction of memory references not found in cache (misses / accesses)
=1 - hit rate
= Typical numbers (in percentages):
= 3-10% for L1
= can be quite small (e.g., < 1%) for L2, depending on size, etc.

m Hit Time
" Time to deliver a line in the cache to the processor
= includes time to determine whether the line is in the cache
= Typical numbers:
= 4 clock cycle for L1
= 10 clock cycles for L2

m Miss Penalty
= Additional time required because of a miss
= typically 50-200 cycles for main memory (Trend: increasing!)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31
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Let’s think about those numbers

m Huge difference between a hit and a miss
= Could be 100x, if just L1 and main memory

m Would you believe 99% hits is twice as good as 97%?

= Consider:
cache hit time of 1 cycle
miss penalty of 100 cycles

= Average access time:

97% hits: 1 cycle + 0.03 x 100 cycles = 4 cycles
99% hits: 1 cycle + 0.01 x 100 cycles = 2 cycles

m This is why “miss rate” is used instead of “hit rate”

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32
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Writing Cache Friendly Code

m Make the common case go fast
" Focus on the inner loops of the core functions

m Minimize the misses in the inner loops
= Repeated references to variables are good (temporal locality)
= Stride-1 reference patterns are good (spatial locality)

Key idea: Our qualitative notion of locality is quantified
through our understanding of cache memories

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33
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Today

m Performance impact of caches

" The memory mountain

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34
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The Memory Mountain

m Read throughput (read bandwidth)

= Number of bytes read from memory per second (MB/s)

m Memory mountain: Measured read throughput as a
function of spatial and temporal locality.

= Compact way to characterize memory system performance.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35



Memory Mountain Test Function

long data[MAXELEMS]; /* Global array to traverse */

/* test - Iterate over first "elems" elements of

* array '"data" with stride of "stride", using Call test () with many
& using 4x4 loop unrolling. combinations of elems
*/

int test(int elems, int stride) { and stride.

long i, sx2=stride*2, sx3=stride*3, sx4=stride*4;
long accO0 = 0, accl = 0, acc2 = 0, acec3 = 0; For each elems and
long length = elems, limit = length - sx4; stride:

/* Combine 4 elements at a time */
for (1 = 0; i < limit; i += sx4) {
accO0 = accO0 + datal[i];
accl = accl + data[i+stride];

1. Call test() once to
warm up the caches.

acc2 = acc2 + data[i+sx2]; 2. Call test() again and
acc3 = acc3 + data[i+sx3]; measure the read
b throughput(MB/s)

/* Finish any remaining elements */
for (; i < length; i++) {
acc0O0 = accO0 + data[i];

}

return ((accO0 + accl) + (acc2 + ace3l));

} mountain/mountain.c

36
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Core i5 Haswell

The Memory Mountain 3.1 GHz

32 KB L1 d-cache

Aggressive 256 KB L2 cache
prefetching 8 MB L3 cache
64 B block size
32000
28000
g 24000
=
£ 20000
Q.
S 16000
3 G Ridges
£ 12000 of temporal
é 5000 locality
400
Slopes
of spatial
locality s5

s7
Stride (x8 bytes)
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Cache Capacity Effects from
Memory Mountain

30000

25000 —
Q
m | |
EZOOOO
5 .
2 Main
L
5 15000 L3 22— t1
o Memory
£
® 10000 — 4+ —
[©)
(14

5000 — — — H B BT R—

0 _-_-_-_-_.-_._L._.__.J_.__IJ_

N4
Working set size (bytes)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Core i7 Haswell
3.1 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Slice through
memory
mountain with
stride=8
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Cache Block Size Effects from Core i7 Haswell
I 32 KB L1 d-cach
Memory Mountain 32 KB L1 d-cache
8 MB L3 cache
Throughput for size = 128K 64 B block size
35000

Miss rate = s/8

Miss rate = 1.0
=0=Measured

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12  Strides

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39



Modeling Block Size Effects
from Memory Mountain

Throughput for size = 128K

Carnegie Mellon

Core i7 Haswell
2.26 GHz

32 KB L1 d-cache
256 KB L2 cache
8 MB L3 cache
64 B block size

Throughput

10°

8.0s+24.3

sl s2 s3 s4 s5 s6 s/ s8 s9

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

s10

=0=\leasured
==Model

s11  s12 Stride s
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Today

= Rearranging loops to improve spatial locality

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 41
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Matrix Multiplication Example

m Description:

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Multiply N x N matrices

Matrix elements are
doubles (8 bytes)

23 total FP operations

N reads per source
element

N values summed per
destination

= but may be able to
hold in register

Variable sum

/* ijk */ held in register
for (i=0; i<n; i++) {
for (j=0; j<n; j++) { //
sum = 0.0; <
for (k=0; k<n; k++)
sum += a[i] [k] * b[k]I[]j];
c[i] [J] = sum;

matmult/mm. c

42
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Miss Rate Analysis for Matrix Multiply

m Assume:
= Block size = 64B (big enough for four doubles)
= Matrix dimension (N) is very large
= Approximate 1/N as 0.0
® Cache is not even big enough to hold multiple rows

m Analysis Method:
" Look at access pattern of inner loop

C A B

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 43
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Layout of C Arrays in Memory (review)

m Carrays allocated in row-major order
= each row in contiguous memory locations
m Stepping through columns in one row:
" for (i = 0; i < N; i++)
sum += a[0][i];
= accesses successive elements
= if block size (B) > sizeof(a;) bytes, exploit spatial locality
= miss rate = sizeof(a;) / B
m Stepping through rows in one column:
" for (1 = 0; 1 < n; i++)
sum += a[i] [0];
= accesses distant elements
" no spatial locality!
= miss rate =1 (i.e. 100%)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 44
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Matrix Multiplication (ijk)

/* ijk */
for (i=0; i<n; i++) {

for (j=0; j<n; j++) { -
sum = 0.0; g (i) (IiJ)
A B

Inner loop:

for (k=0; k<n; k++)
sum += a[i] [k] * b[k]l[j];

cli] [§] = sum; ‘ ‘ ‘
}

matmult/mm.c B Row-wise Column- Fixed
wise

Misses per inner loop iteration:
A B C

0.125 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 45
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Matrix Multiplication (jik)

/* jik */
for (j=0; j<n; j++) {

for (i=0; i<n; i++) { *

sum = 0.0; L;;;J _ E]ii: (ﬁn
for (k=0; k<n; k++) (i,%)

sum += a[i] [k] * b[k][j]; A B

c[i][j] = sum ‘ ‘ ‘
)

matmult/mm. c Row-wise Column- Fixed
wise

Inner loop:

Misses per inner loop iteration:

A B C

0.125 1.0 0.0

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 46
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Matrix Multiplication (ki)

/* kij */
Inner loop:
for (k=0; k<n; k++) {
for (i=0; i<n; i++) ({ (i,k) :(k'*)g
r = a[i] [k]; i (i,%)
for (j=0; j<n; jJj++) A B C
c[i][J] += r * b[k][]j]~ ‘ ‘ ‘
matmult/mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.125  0.125

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 47
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Matrix Multiplication (ik )

& 1k:_1 */ _ _ Inner loop:
for (1=0; i<n; i++) {
for (k=0; k<n; k++) { (i,k) :(k'*)g
r = a[i] [k]; 0 (i,%)
for (3=0; j<n; j++) A B C
c[i] [J] += r * b[k][]]~ ‘ ‘ ‘
ma tmul t /mm.c Fixed Row-wise Row-wise

Misses per inner loop iteration:

A B C

0.0 0.125  0.125

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 48
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Matrix Multiplication (ki)

/* ki */ Inner loop:
for (j=0; j<n; Jj++) { (* k) * 1)
for (k=0; k<n; k++) { (k.j) |:E
r = b[k][j]; ” .
for (i=0; i<n; i++) A B C
c[il[j] += a[il[k] * r; ‘ ‘
}
o ey e Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0
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Matrix Multiplication (kji)

/* kji */
for (k=0; k<n; k++) {

for (3=0; j<n; j++) { * k) *]
r = b[k][j]; (I:,J')

for (i=0; i<n; i++)

Inner loop:

A . A B C
c[1][]J] += al[i][k] * r; ‘ ‘ ‘
matmult/mm. c
Column- Fixed Column-
wise wise

Misses per inner loop iteration:
A B C

1.0 0.0 1.0
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Summary of Matrix Multiplication

Bryant and O’Hallaron,

for (i=0; i<n; i++) {
for (3j=0; j<n; j++) {
sum = 0.0;
for (k=0; k<n; k++)
sum += a[i][k] * b[k]I[j];
c[i][]J] = sum;
}
}

for (k=0; k<n; k++) {
for (i=0; i<n; i++) {
r = a[i] [k]’
for (j=0; j<n; j++)
c[i]l[3] += r * b[k][]3]~
}
}

for (3j=0; j<n; j++) {

for (k=0; k<n; k++) {
r = b[k][]3]~
for (i=0; i<n; i++)
c[i]l[3] += al[il[k] * r;

ijk (& jik):
¢ 2 loads, O stores
e misses/iter = 1.125

kij (& ikj):
e 2 |loads, 1 store
e misses/iter = 0.25

jki (& kji):
e 2 |loads, 1 store
e misses/iter = 2.0
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2008-era Matrix Multiply Performance

Nanoseconds per floating-point operation. Measured on 2.4GHz Core 2 Duo

6
jki /kji (2.0)
5 - =
4
&
g —0mi 5k
8, ijk/jik (1.125) = -@=jixk
& *jki
\ = =
c =>=kji
2 ki
e g “Tik]
kij /ikj (0.25)
1 e—— : : : : -
O T T T T T T T T T T T T 1
50 100 150 200 250 300 350 400 450 500 550 600 650
N
52
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2014-era Matrix Multiply Performance

Nanoseconds per floating-point operation. Measured on 3.1 Ghz Haswell

1.4
jki /kji (2.0)
1.2
1
% 08 ik
3 =i=qik
o —
<06 ijk/jik(1.125) — 7%
> ijk/3jik( : ) st
S —tp——— S *kij
0.4
“O=ikj
0.2 s s e
kij /ikj (0.25)
0 T T T T T T T T T T T T 1

50 100 150 200 250 300 350 400 450 500 550 600 650
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Core 2 Duo

2008 Memory Mountain 2.4 Ghz

32 KB L1 d-cache

No
prefetching A\ 6MB L2 cache

64 B block size

\

Read throughput (MB/s)

s3 128k

s5 512k

2m

s7
Stride (x8 bytes) s9 39m 8m Size (bytes)

s11
128m
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Core i5 Haswell

2014 Memory Mountain 3.1GHz

32 KB L1 d-cache

Aggressive 256 KB L2 cache
prefetching 8 MB L3 cache
64 B block size

32000

28000

- N N

S NN
S & ©
o o9 =
o o o

12000

Read throughput (MB/s)

8000

4000

32k
128k

512k
2m

Size (bytes)

s1
s3

s5
s7
Stride (x8 bytes)

s9 8m

32m

s 28m
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EXTRA SLIDES
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Today

= Using blocking to improve temporal locality
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Example: Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm (double *a, double *b, double *c, int n) {
int i1, j, k;
for (1 = 0; 1 < n; i++)
for (J = 0; j < n; j++)
for (k = 0; k < n; k++)
c[i*n + j] += a[i*n + k] * b[k*n + j];

I
X
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Cache Miss Analysis

m Assume:

= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

n
m First iteration: —

" n/8+n=9n/8 misses i

= X
= Afterwards in cache:

(schematic) . ——
- X
8 wide
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Cache Miss Analysis

m Assume:
= Matrix elements are doubles
= Cache block = 8 doubles
" Cache size C << n (much smaller than n)

n
m Second iteration: —
= Again: :
n/8 + n =9n/8 misses _
- X
8 wide

m Total misses:
" 9n/8 n*=(9/8) n3
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Blocked Matrix Multiplication

¢ = (double *) calloc(sizeof (double), n*n);

/* Multiply n x n matrices a and b */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;

for (i = 0; i < n; i+=B)

for (J = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)
/* B x B mini matrix multiplications */
for (il = i; il < i+B; il++)
for (j1 = j; jl < J+B; jl++)
for (k1 = k; k1l < k+B; kl++)
c[il*n+jl] += a[il*n + kl]*b[kl*n + jl1l];

} matmult/bmm. c

jl
Cc a b Cc
= X +
m iiEEEe
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B%>< C

. . . n/B blocks
m First (block) iteration: A
= B2/8 misses for each block M BEEEE B
" 2n/B x B/8 = nB/4 _ —
(omitting matrix c) - X ]
= Afterwards in cache [] EEEEE Block size B x B
(schematic)

X
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Cache Miss Analysis

m Assume:
= Cache block = 8 doubles
= Cache size C << n (much smaller than n)
" Three blocks M fit into cache: 3B%>< C

. . n/B blocks
m Second (block) iteration: A
" Same as first iteration ] BEEREE
= 2n/BxB2/8 =nB/4 _ X
m Total misses: Block size B x B

= nB/4 * (n/B)?=n3/(4B)
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Blocking Summary

m No blocking: (9/8) n®
m Blocking: 1/(4B) n3

m Suggest largest possible block size B, but limit 3B2 < C!

m Reason for dramatic difference:
= Matrix multiplication has inherent temporal locality:
= |nput data: 3n?, computation 2n3
= Every array elements used O(n) times!
= But program has to be written properly
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Cache Summary

m Cache memories can have significant performance impact

m You can write your programs to exploit this!
" Focus on the inner loops, where bulk of computations and memory
accesses occur.
"= Try to maximize spatial locality by reading data objects with
sequentially with stride 1.
= Try to maximize temporal locality by using a data object as often as
possible once it’s read from memory.
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