Floating Point

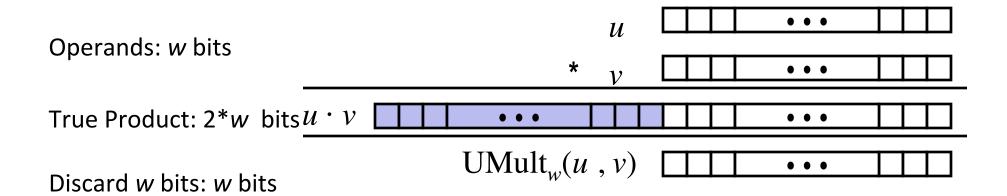
15-213: Introduction to Computer Systems 4th Lecture, Sept. 8, 2016

Today's Instructor:

Randy Bryant

Correction from last time

Unsigned Multiplication in C

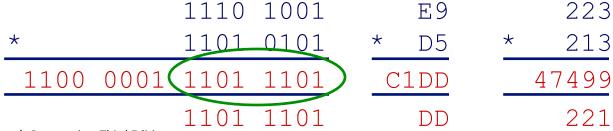


Standard Multiplication Function

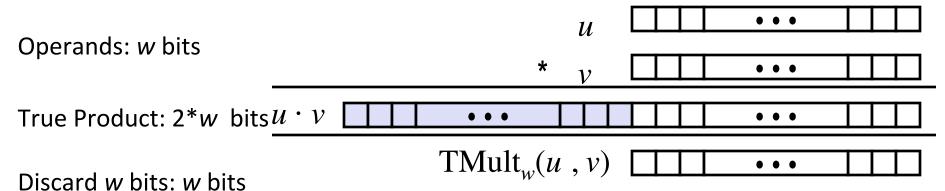
Ignores high order w bits

■ Implements Modular Arithmetic

$$UMult_w(u, v) = u \cdot v \mod 2^w$$



Signed Multiplication in C



Standard Multiplication Function

- Ignores high order w bits
- Some of which are different for signed vs. unsigned multiplication
- Lower bits are the same

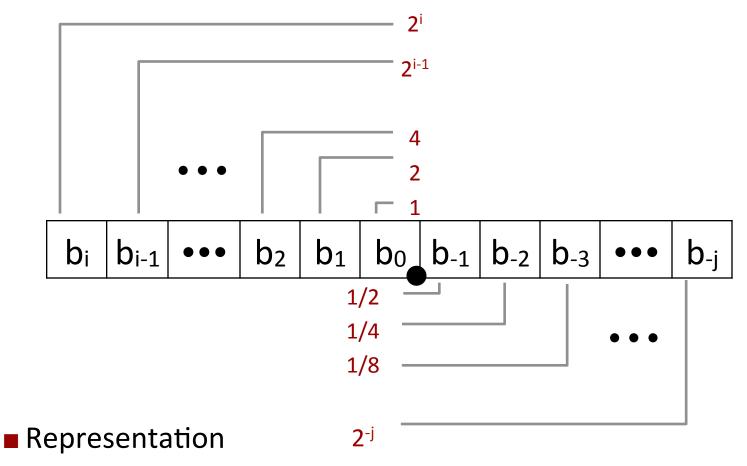
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

■ What is 1011.101₂?

Fractional Binary Numbers



- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \times 2^k$

Fractional Binary Numbers: Examples

Value

Representation

$$5 3/4 = 23/4$$
 101
 $2 7/8 = 23/8$ 10
 $1 7/16 = 23/16$ 1

$$101.11_2 = 4 + 1 + 1/2 + 1/4$$

 $10.111_2 = 2 + 1/2 + 1/4 + 1/8$

$$1.0111_2 = 1 + 1/4 + 1/8 + 1/16$$

Observations

- Divide by 2 by shifting right (unsigned)
- Multiply by 2 by shifting left
- Numbers of form 0.111111...₂ are just below 1.0

■
$$1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$$

■ Use notation 1.0 – ε

Representable Numbers

- Limitation #1
 - Can only exactly represent numbers of the form x/2^k
 - Other rational numbers have repeating bit representations
 - Value Representation
 - **1/3** 0.01010101[01]...2
 - 1/5 0.001100110011[0011]...₂
 - **1/10** 0.000110011[0011]...2

■ Limitation #2

- Just one setting of binary point within the w bits
 - Limited range of numbers (very small values? very large?)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

IEEE Floating Point

- IEEE Standard 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs
 - Some CPUs don't implement IEEE 754 in full e.g., early GPUs
- Driven by numerical concerns
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

Numerical Form:

Example:
$$15213_{10} = (-1)^0 \times 1.1101101101101_2 \times 2^{13}$$

- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).

 $(-1)^{s} M 2^{E}$

- Exponent E weights value by power of two
- Encoding
 - MSB S is sign bit s
 - exp field encodes E (but is not equal to E)
 - frac field encodes M (but is not equal to M)

S	exp	frac

Precision options

- Single precision: 32 bits
 - ≈ 7 decimal digits, $10^{\pm 38}$

S	ехр	frac
1	8-bits	23-bits

- Double precision: 64 bits
 - ≈ 16 decimal digits, $10^{\pm 308}$

Other formats: half precision, quad precision

"Normalized" Values

 $v = (-1)^s M 2^E$

- When: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as a biased value: E = Exp Bias
 - Exp: unsigned value of exp field
 - Bias = 2^{k-1} 1, where k is number of exponent bits
 - Single precision: 127 (Exp: 1...254, E: -126...127)
 - Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
- Significand coded with implied leading 1: M = 1.xxx...x₂
 - xxx...x: bits of frac field
 - Minimum when frac=000...0 (M = 1.0)
 - Maximum when frac=111...1 (M = 2.0ε)
 - Get extra leading bit for "free"

Normalized Encoding Example

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

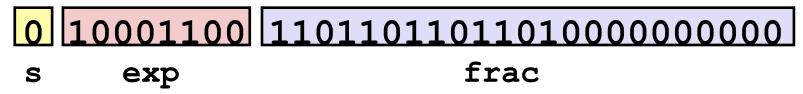
- Value: float F = 15213.0;
 - $15213_{10} = 11101101101101_2$ = $1.1101101101101_2 \times 2^{13}$

Significand

Exponent

$$E = 13$$
 $Bias = 127$
 $Exp = 140 = 10001100_{2}$

Result:



16

Denormalized Values

$$v = (-1)^{s} M 2^{E}$$

 $E = 1 - Bias$

- **■** Condition: exp = 000...0
- Exponent value: E = 1 Bias (instead of 0 Bias)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac
- Cases
 - exp = 000...0, frac = 000...0
 - Represents zero value
 - Note distinct values: +0 and -0 (why?)
 - exp = 000...0, $frac \neq 000...0$
 - Numbers closest to 0.0
 - Equispaced

Special Values

- **■** Condition: exp = **111**...**1**
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
- Case: exp = 111...1, frac ≠ 000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(-1), $\infty \infty$, $\infty \times 0$

C float Decoding Example

float: 0xC0A00000

 $v = (-1)^s M 2^E$ E = Exp - Bias

Bias =
$$2^{k-1} - 1 = 127$$

binary: ____



1 8-bits

23-bits

(decimal)

$$M =$$

$$v = (-1)^s M 2^E =$$

E

C float Decoding Example

 $v = (-1)^s M 2^E$ E = Exp - Bias

float: **0xC0A00000**

1 1000 0001 010 0000 0000 0000 0000

1 8-bits 23-bits

$$E = -> Exp =$$
 (decimal)

S =

M = 1.

 $v = (-1)^s M 2^E =$

He	t De	Binar
0	0	0000
1	1	0001
2	2	0010
3	3	0011
4	4	0100
5	5	0101
0 1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8	0110
7	7	0111
8		1000
	9	1001
Α	10	1010
В	11	1011
С	12	1100
A B C D	13	1101
E	14	1110
F	15	1111

C float Decoding Example

float: **0xC0A00000**

$$v = (-1)^s M 2^E$$

 $E = Exp - Bias$

Bias =
$$2^{k-1} - 1 = 127$$

1 8-bits 23-bits

$$E = 129 -> Exp = 129 - 127 = 2$$
 (decimal)

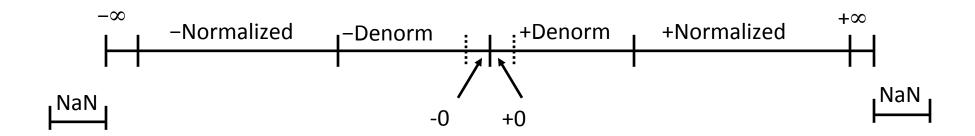
S = 1 -> negative number

$$M = 1.010 0000 0000 0000 0000 0000$$

= 1 + 1/4 = 1.25

$$v = (-1)^s M 2^E = (-1)^1 * 1.25 * 2^2 = -5$$

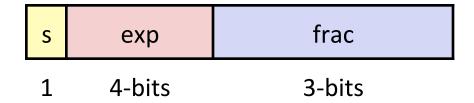
Visualization: Floating Point Encodings



Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example



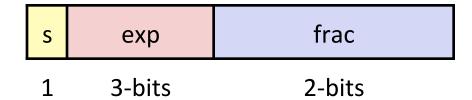
- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit
 - the next four bits are the exponent, with a bias of 7
 - the last three bits are the frac
- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

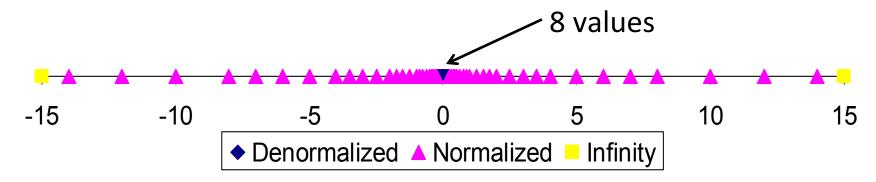
Dyna	$v = (-1)^{s} M 2^{E}$ n: E = Exp - Bias				
	s exp	frac	E	Value	d: $E = 1 - Bias$
	0 0000	000	-6	0	
	0 0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	$(-1)^{0}(0+1/4)*2^{-6}$
numbers					
	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000	111	-6	7/8*1/64 = 7/512	largest denorm
	0 0001	. 000	-6	8/8*1/64 = 8/512	smallest norm
	0 0001	. 001	-6	9/8*1/64 = 9/512	$(-1)^{0}(1+1/8)*2^{-6}$
	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110	111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111	. 000	0	8/8*1 = 1	
numbers	0 0111	. 001	0	9/8*1 = 9/8	closest to 1 above
	0 0111	. 010	0	10/8*1 = 10/8	
	0 1110	110	7	14/8*128 = 224	
	0 1110	111	7	15/8*128 = 240	largest norm
	0 1111	. 000	n/a	inf	

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

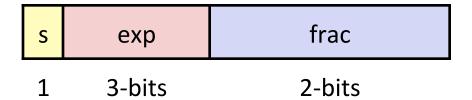


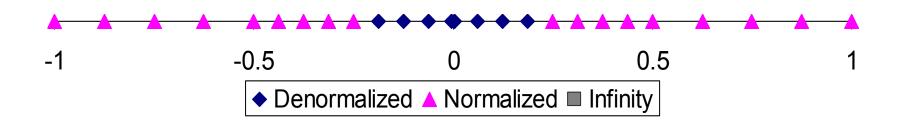
■ Notice how the distribution gets denser toward zero.



Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3





Special Properties of the IEEE Encoding

- FP Zero Same as Integer Zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield? The answer is complicated.
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point Operations: Basic Idea

$$\blacksquare x +_f y = Round(x + y)$$

$$\blacksquare$$
 x \times_f y = Round(x \times y)

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into frac

Rounding

Rounding Modes (illustrate with \$ rounding)

- Towards zero

- \$1.40

- \$1.60 \$1.50 \$2.50
- -\$1.50
- \$1 ↓
- Round down (-∞)
 \$1 \ldot \$1 \ldot \$1 \ldot \$2 \ldot -\$2 \ldot \$
- Round up (+∞)
 \$2 ↑ \$2 ↑ \$3 ↑ -\$1 ↑
- Nearest Even (default) \$1 √ \$2 ↑ \$2 √ \$2 √ —\$2 √

Closer Look at Round-To-Even

- Default Rounding Mode
 - Hard to get any other kind without dropping into assembly
 - C99 has support for rounding mode management
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or underestimated
- Applying to Other Decimal Places / Bit Positions
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth

7.8949999	7.89	(Less than half way)
7.8950001	7.90	(Greater than half way)
7.8950000	7.90	(Half way—round up)
7.8850000	7.88	(Half way—round down)

Rounding Binary Numbers

- Binary Fractional Numbers
 - "Even" when least significant bit is 0
 - "Half way" when bits to right of rounding position = 100...2

Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.000112	10.002	(<1/2—down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2—up)	2 1/4
2 7/8	10.11 <mark>100</mark> 2	11.0 <mark>0</mark> 2	(1/2—up)	3
2 5/8	10.10 <mark>100</mark> 2	10.1 <mark>0</mark> 2	(1/2—down)	2 1/2

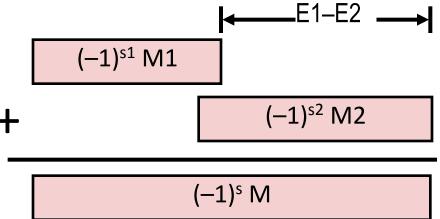
FP Multiplication

- \blacksquare (-1)^{s1} M1 2^{E1} x (-1)^{s2} M2 2^{E2}
- Exact Result: (-1)^s M 2^E
 - Sign s: s1 ^ s2
 - Significand M: M1 x M2
 - Exponent E: E1 + E2
- Fixing
 - If M ≥ 2, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision
- Implementation
 - Biggest chore is multiplying significands

```
4 bit mantissa: 1.010*2^2 \times 1.110*2^3 = 10.0011*2^5
= 1.00011*2^6 = 1.001*2^6
```

Floating Point Addition

- $-(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$
 - Assume E1 > E2
- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1
- Fixing
 - If M ≥ 2, shift M right, increment E
 - ■if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision



$$1.010*2^{2} + 1.110*2^{3} = (0.1010 + 1.1100)*2^{3}$$

= 10.0110 * 2³ = 1.00110 * 2⁴ = 1.010 * 2⁴

Mathematical Properties of FP Add

- Compare to those of Abelian Group
 - Closed under addition?
 - But may generate infinity or NaN
 - Commutative?
 - Associative?
 - Overflow and inexactness of rounding
 - (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14

Yes

- 0 is additive identity?
- Every element has additive inverse?
 Almost
 - Yes, except for infinities & NaNs
- Monotonicity
 - $a \ge b \Rightarrow a+c \ge b+c$?
 - Except for infinities & NaNs

Mathematical Properties of FP Mult

- Compare to Commutative Ring
 - Closed under multiplication?

Yes

- But may generate infinity or NaN
- Multiplication Commutative?

Yes

• Multiplication is Associative?

No

- Possibility of overflow, inexactness of rounding
- Ex: (1e20*1e20) *1e-20= inf, 1e20* (1e20*1e-20) = 1e20
- 1 is multiplicative identity?

Yes

• Multiplication distributes over addition?

No

- Possibility of overflow, inexactness of rounding
- = 1e20*(1e20-1e20) = 0.0, 1e20*1e20 1e20*1e20 = NaN
- Monotonicity
 - $a \ge b \& c \ge 0 \Rightarrow a * c \ge b *c$?

Almost

Except for infinities & NaNs

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- C Guarantees Two Levels
 - float single precision
 - double double precision
- Conversions/Casting
 - Casting between int, float, and double changes bit representation
 - double/float → int
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to TMin
 - int \rightarrow double
 - Exact conversion, as long as int has ≤ 53 bit word size
 - int → float
 - Will round according to rounding mode

Floating Point Puzzles

- For each of the following C expressions, either:
 - Argue that it is true for all argument values
 - Explain why not true

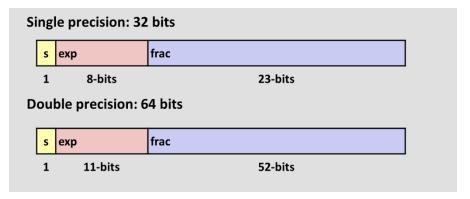
```
int x = ...;
float f = ...;
double d = ...;
```

Assume neither d nor f is NaN

Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form M x 2^E
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications

programmers



41

HOW ROUNDING WORKS

Creating Floating Point Number

Steps

- Normalize to have leading 1
- Round to fit within fraction

- s exp frac

 1 4-bits 3-bits
- Postnormalize to deal with effects of rounding

Case Study

Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128	10000000
15	00001101
33	00010001
35	00010011
138	10001010
63	00111111

Normalize

S	exp	frac
1	4-bits	3-bits

- Requirement
 - Set binary point so that numbers of form 1.xxxxx
 - Adjust all to have leading one
 - Decrement exponent as shift left

Value	Binary	Fraction	Exponent
128	10000000	1.0000000	7
15	00001101	1.1010000	3
17	00010001	1.0001000	4
19	00010011	1.0011000	4
138	10001010	1.0001010	7
63	0011111	1.1111100	5

Rounding

1.BBGRXXX

Guard bit: LSB of result

Sticky bit: OR of remaining bits

Round bit: 1st bit removed

Round up conditions

- Round = 1, Sticky = $1 \rightarrow > 0.5$
- Guard = 1, Round = 1, Sticky = 0 → Round to even

Value	Fraction	GRS	Incr?	Rounded
128	1.0000000	000	N	1.000
15	1.1010000	100	N	1.101
17	1.0001000	010	N	1.000
19	1.0011000	11 0	Y	1.010
138	1.0001010	011	Y	1.001
63	1.1111100	111	Y	10.000

Postnormalize

Issue

- Rounding may have caused overflow
- Handle by shifting right once & incrementing exponent

Value	Rounded	Exp	Adjusted	Numeric Result
128	1.000	7		128
15	1.101	3		15
17	1.000	4		16
19	1.010	4		20
138	1.001	7		134
63	10.000	5	1.000/6	64

Additional Slides

Interesting Numbers

{single, double}

Description	exp	frac	Numeric Value
Zero	0000	0000	0.0
 Smallest Pos. Denorm. Single ≈ 1.4 x 10⁻⁴⁵ 	0000	0001	$2^{-\{23,52\}} \times 2^{-\{126,1022\}}$
■ Double $\approx 4.9 \times 10^{-324}$			
 Largest Denormalized Single ≈ 1.18 x 10⁻³⁸ Double ≈ 2.2 x 10⁻³⁰⁸ 	0000	1111	$(1.0 - \varepsilon) \times 2^{-\{126,1022\}}$
Smallest Pos. NormalizedJust larger than largest denormalized	0001 nalized	0000	$1.0 \times 2^{-\{126,1022\}}$
One	0111	0000	1.0
 Largest Normalized Single ≈ 3.4 x 10³⁸ 	1110	1111	$(2.0 - \varepsilon) \times 2^{\{127,1023\}}$

■ Double $\approx 1.8 \times 10^{308}$