Carnegie Mellon

Bits, Bytes, and Integers — Part 2

15-213: Introduction to Computer Systems
3"d Lecture, Sept. 6, 2016

Today’s Instructor:
Randy Bryant
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First Assignment: Data Lab
m Due: Thursday, Sept. 15th 2016, 11:59:00 pm

m Last Possible Time to Turn in: Sunday, Sept. 18th, 11:59PM
m Read the instructions carefully: writeup, bits.c, tests.c

m Seek help
= Office hours already running

= Recitation, Monday Sept. 12
m Based on Lecture 2, 3, and 4 (CS:APP Chapter 2)

m After today’s lecture you know everything for the integer
problems, float problems covered on Tuesday
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Linux Boot Camp

m Tonight, Tuesday, Sept. 6
= 7:30-9:00 pm
= Rashid Auditorium

m Bring your laptop

m Open to undergrads and masters students
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Summary From Last Lecture

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating
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Encoding Integers

Unsigned 1 Two’s Complement :
w-— 1 w

BUX) = Y x-2 BT(X) = -x,,2" "+

l

- \l=0

Two’s Complement Examples (w = 5)

xl' °2l

Sign Bit

-16 8 4 2 1

10= 0 1 0 1 O 8+2 10

-16 8 4 2 1
-10 =1 0 1 1 0 -16+4+2 = -10
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Unsigned & Signed Numeric Values

X B2U(X B2T(X ]
0000 0 0
0001 1 1
0010 2 2
0011 3 3 .
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8 O
1001 9 -7
1010 10 —6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 —2
1111 15 -1
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Equivalence
= Same encodings for nonnegative
values
Uniqueness

= Every bit pattern represents
unique integer value

= Each representable integer has
unique bit encoding
Expression containing signed

and unsigned int:
int iscasttounsigned



Carnegie Mellon

Sign Extension and Truncation

m Sign Extension
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Today: Bits, Bytes, and Integers

O
O
m Integers
¥
o
o
= Addition, negation, multiplication, shifting
O
O
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Unsigned Addition

Operands: w bits U ==
+ V o 00
True Sum: w+1 bits 3+ Vv P
Discard Carry: w bits UAdd, (u ,v) 2

'6‘%\ S

. . @ o &

m Standard Addition Function T T o000

" |gnores carry output % ; 88%

= Implements Modular Arithmetic T Toio0

s = UAdd, (u,v) = u+v mod2% Z 2 8%%

/ 7 0111

- 8 |8 | 1000

unsigned char 1110 1001 E9 223 5> To 1001

+ 1101 0101 + D5 + 213 A [10] 1010

B |11 [ 1011

1 1011 1110 1BE 446 c [12[1100

D 113 11101

1011 1110 BE 190 E (141110

F 115 11111
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Visualizing (Mathematical) Integer Addition

m Integer Addition Add,(u, v)

= 4-bit integers u, v Integer Addition

" Compute true sum
Add,(u, v)

= Values increase linearly
with uand v

® Forms planar surface
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Visualizing Unsigned Addition

m Wraps Around Overflow
\

" |f true sum > 2%

= At most once

True Sum

2W+1“ Overflow
» "_LT
0o -

Modular Sum
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Two’s Complement Addition

Operands: w bits u L
+ Vv o0 0

True Sum: w+1 bits
u-+v XK
Discard Carry: w bits TAdd (u ,v) (XX

m TAdd and UAdd have Identical Bit-Level Behavior
= Signed vs. unsigned addition in C:

int s, t, u, v;

s = (int) ((unsigned) u + (unsigned) v);
t=u+v
" Willgive s == 1110 1001 E9 -23
+ 1101 0101 + D5 + -43
1 1011 1110 1BE 446

1011 1110 BE -606
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TAdd Overflow

m Functionality True Sum
" True sumrequires w+1 ~ 0111.1 2v-1 T
bits 2 TAdd Result
= Drop off MSB 0100..0 2w-1-1 + T o011.1
" Treat remaining bits as
2’s comp. integer 0000..0 0o + +  000.0
1011.1  _yw-1 4 L oo
1000...0 _ow L1 NegOver

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13



Carnegie Mellon

Visualizing 2’s Complement Addition

NegOver

m Values
= 4-bit two’s comp.

= Range from -8 to +7

m Wraps Around
= |f sum = 2w
= Becomes negative
= At most once
" |f sum < -2w1
= Becomes positive
= At most once

u 6 - PosOver
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Characterizing TAdd

Positive Overflow

m Functionality TAdd(u,v) |
" True sum requires w+1 bits '
= Drop off MSB V> 0 \
= Treat remaining bits as 2’s <0 \
comp. integer /
/<Ou>0

Negative Overflow

(u+v+ Jw u+v <TMin,, (NegOver)
TAdd,,(u,v) = qu+v TMin,, <su+v=TMax,,

u+v-— 2W TMGXW <u+v (PosOver)
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Multiplication

m Goal: Computing Product of w-bit numbers x, y
= Either signed or unsigned

m But, exact results can be bigger than w bits
= Unsigned: up to 2w bits
= Resultrange:0<x*y<(2w—-1)2%2 = 22w—-2w+l 4+ 1
= Two’s complement min (negative): Up to 2w-1 bits
= Resultrange: x *y > (2w 1)*(2w1-1) = —22w-24 2wl
= Two’s complement max (positive): Up to 2w bits, but only for (TMin ,)?
= Result range: x * y < (—2w1) 2 = 22w
m So, maintaining exact results...
= would need to keep expanding word size with each product computed
® js done in software, if needed
= e.g., by “arbitrary precision” arithmetic packages
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Unsigned Multiplication in C

u o 00
Operands: w bits
* o000
)%
True Product: 2*w bitsUl * V s 0 s e
. ) ) UMUltW(M . V) X
Discard w bits: w bits
m Standard Multiplication Function
= |gnores high order w bits
m Implements Modular Arithmetic
UMult (u,v)= u -v mod 2%
1110 1001 ES 223
x 1101 0101 * D5 x 213
1100 0001 1101 1101 C1DD 47499

1101 1101 DD 221
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Signed Multiplication in C

u o 00
Operands: w bits
* o000
)%
True Product: 2*w bitsUl * V ° 00 s 00
. . ) TMultw(l/t R V) X
Discard w bits: w bits
m Standard Multiplication Function
" |gnores high order w bits
= Some of which are different for signed
vs. unsigned multiplication
= Lower bits are the same
1110 1001 ES -23
x 1101 0101 * DS % -43
0000 0011 1101 1101 03DD 989

1101 1101 DD -35

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18



Carnegie Mellon

Power-of-2 Multiply with Shift

m Operation
" u << kgivesu * 2k

= Both signed and unsigned k
Operands: w bits " —
* 2k |0] eee 0fl1]o] eee JOlO|
True Product: w+k bits U * 2% coe 0] eee [0]0
Discard k bits: w bits UMult, (u , 2%) 0o 0| eee |0l0]

TMult, (u , 2%)
m Examples

" u << 3 == u * 8

" (u<<K b)) - (u<K 3)== u * 24

" Most machines shift and add faster than multiply
= Compiler generates this code automatically
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Unsigned Power-of-2 Divide with Shift

m Quotient of Unsigned by Power of 2
" u >> kgives |u / 2]
= Uses logical shift

k
o 4 u AL AL Binary Point
erands:

p l 2k 0] eee OI]_IO (XX (ﬂg /
Division: u/2k 1ol eee Jolo e T T
Result: | /2] Lol e« lol0 AL

Division [ Computed Hex Binary

X 15213 15213 3B 6D| 00111011 01101101

x >> 1 7606.5 7606 1D B6| 00011101 10110110

x >> 4 950.8125 950 03 B6| 00000011 10110110

x >> 8 [ 59.4257813 59 00 3B| 00000000 00111011
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Signed Power-of-2 Divide with Shift

m Quotient of Signed by Power of 2
" x > kgives | x / 2]
= Uses arithmetic shift

= Rounds wrong direction whenu < 0

k
X 2ee 2ee Binary Point
Operands:
l 2k 0| eee OI]_IO XX m
Division: x /| 2k LU L I/ L1
Result:  RoundDown(x / 2¥) ooo voo
Division [ Computed Hex Binary
y -15213 -15213 C4 93| 11000100 10010011
y > 1 -7606.5 -7607 E2 49| 11100010 01001001
y >> 4 -950.8125 -951 FC 49| 11111100 01001001
y >> 8 |-59.4257813 -60 FF C4| 11111111 11000100

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
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Correct Power-of-2 Divide

m Quotient of Negative Number by Power of 2
" Want [x / 2¥] (Round Toward 0)
= Computeas | (x+2k-1)/ 2k]
- InC: (x + (1<<k)-1) >> k
= Biases dividend toward O

Case 1: No rounding k
Dividend: y L1 eee|]o] «e- J0l0
+2k_1 0] eee |0]0]1] eee [1]1]
1 coo 1] _eee J1]1] Binary Point
Divisor: | 2k 1ol -e- lolil0l «-» f0l0 /
|'u/2k'| 1] eee J1]1]1 coe ’1_1 oee [1]1]

Biasing has no effect
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Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

k
Dividend: x 1L | eee oee
+2k_1 0] eee OIOI]_ XY m
_]_ XX XX
\ J
Y
Incremented by 1 Binary Point
Divisor: [ 2k [0l eee JO[1]0] eee ]0lO
|-.X/2k -| _]_ eoe |1]1111 YY) 4 eoeo
\ J
Y

Incremented by 1

Biasing adds 1 to final result
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Negation: Complement & Increment

m Negate through complement and increase

~x + 1 == -x
m Example
= Observation: ~x + x == 1111..111 == -1
x [110[0]1]11{1]0]1
+ ~x |0{1]1]0]0]0f1]0
-1 133303137303
X =15213
Decimal | Hex Binary
X 15213| 3B 6D| 00111011 01101101
~X -15214| C4 92| 11000100 10010010

~x+1 | -15213| C4 93( 11000100 10010011
y -15213| C4 93| 11000100 10010011
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Complement & Increment Examples

x=0
Decimal | Hex Binary

0 0| 00 00| 00000000 00000000

~0 -1| FF FF| 11111111 11111111

~0+1 0| 00 00| 00000000 00000000
X = TMin

Decimal | Hex Binary

X -32768| 80 00| 10000000 00000000

~X 32767| 7F FF| 01111111 11111111

~x+1 [ -32768| 80 00| 10000000 00000000

Canonical counter example
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Today: Bits, Bytes, and Integers

u
u
m Integers
" Summary
N
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Arithmetic: Basic Rules

m Addition:

= Unsigned/signed: Normal addition followed by truncate,
same operation on bit level

= Unsigned: addition mod 2%
= Mathematical addition + possible subtraction of 2%
= Signed: modified addition mod 2% (result in proper range)
= Mathematical addition + possible addition or subtraction of 2%

m Multiplication:

= Unsigned/signed: Normal multiplication followed by truncate,
same operation on bit level

= Unsigned: multiplication mod 2%
= Signed: modified multiplication mod 2% (result in proper range)
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Why Should | Use Unsigned?

m Don’t use without understanding implications
= Easy to make mistakes
unsigned 1i;
for (1 = cnt-2; i >= 0; i--)
af[i] += a[i+l1];

® Can be very subtle
#define DELTA sizeof (int)
int 1;
for (1 = CNT; i-DELTA >= 0; i-= DELTA)
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Counting Down with Unsignhed

m Proper way to use unsigned as loop index
unsigned 1i;
for (i = ecnt-2; i < cnt; i--)
a[i] += a[i+1];
m See Robert Seacord, Secure Coding in C and C++
= (C Standard guarantees that unsigned addition will behave like modular

arithmetic
= 0—1-> UMax

m Even better
size t 1i;
for (i = ecnt-2; i < cnt; i--)
a[i] += a[i+1];
" Datatype size t defined as unsigned value with length = word size
= Code will work even if ent = UMax
®= Whatif ent is sighed and < 0? .
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Why Should | Use Unsigned? (cont.)

m Do Use When Performing Modular Arithmetic
= Multiprecision arithmetic

m Do Use When Using Bits to Represent Sets

® Logical right shift, no sign extension

m Do Use In System Programming

= Bit masks, device commandes,...
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Integer Arithmetic Example
\6‘

Q\d" e @\
unsigned char 0 | 0 ]0000
1 [ 1 10001
1111 0011 F3 243 2 | 2 10010
3 | 3 10011
+ 0101 0010 + 52 + 82 2 T2 Toi00
1 0100 0101 145 325 5 | 510101
6 | 6 [ 0110
0101 0101 45 69 > 17 o111
8 | 8 1000
9 19 11001
A 1011010
unsigned char B [11]1011
C |12 11100
0001 1001 19 25 g %z iigé
* 0000 0010 * 02 * 2 115 1111
0 0011 0010 032 50

0011 0010 32

Ul
O
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Today: Bits, Bytes, and Integers

|
|
m Integers

m Representations in memory, pointers, strings
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Byte-Oriented Memory Organization

m Programs refer to data by address
= Conceptually, envision it as a very large array of bytes
= In reality, it’s not, but can think of it that way
" An address is like an index into that array
= and, a pointer variable stores an address

m Note: system provides private address spaces to each “process”
" Think of a process as a program being executed
= So, a program can clobber its own data, but not that of others
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Machine Words

m Any given computer has a “Word Size”
" Nominal size of integer-valued data
= and of addresses

= Until recently, most machines used 32 bits (4 bytes) as word size
= Limits addresses to 4GB (232 bytes)

" Increasingly, machines have 64-bit word size
= Potentially, could have 18 EB (exabytes) of addressable memory
= That’s 18.4 X 1018

® Machines still support multiple data formats
= Fractions or multiples of word size
= Always integral number of bytes
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Word-Oriented Memory Organization

32-bit 64-bit

. Bytes Addr.
m Addresses Specify Byte Words Words =Y
Locations 0000
] ) Addr

= Address of first byte in word = 0001
: : 0000 0002

" Addresses of successive words differ Addr
by 4 (32-bit) or 8 (64-bit) = 0003
0000 0004
Addr 0005
0004 0006
0007
0008
Addr 0009
0008 Addr 0010
- 0011
0008 0012
Addr 0013
0012 0014
0015
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Example Data Representations

C Data Type Typical 32-bit | Typical 64-bit x86-64

char

short 2 2 2
int 4 4 4
long 4 8 8
float 4 4 4
double 8 8 8
pointer 4 8 8
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Byte Ordering

m So, how are the bytes within a multi-byte word ordered in
memory?

m Conventions
® Big Endian: Sun, PPC Mac, Internet
= Least significant byte has highest address

= Little Endian: x86, ARM processors running Android, iOS, and
Windows

= Least significant byte has lowest address
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Byte Ordering Example

m Example
= Variable x has 4-byte value of 0x01234567
= Address given by &x is 0x100

Big Endian 0x100 0x101 0x102 0x103
01 23 45 6/

Little Endian 0x100 0x101 0x102 0x103
o7 45 23 01
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Decimal: 15213

Representing Integers [Binary: 0011 1011 0110 1101

Hex: 3 B 6 D
int A = 15213; long int C = 15213;
g | [IA32, x86-64 Sun
% IA32 x86-64 Sun
:r% 6D <
£ 3B
@ 00 |
v 00 |

int B = -15213;
1A32, x86-64 Sun

T~

Two’s complement representation
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Examining Data Representations

m Code to Print Byte Representation of Data
= Casting pointer to unsigned char * allows treatment as a byte array

typedef unsigned char *pointer;

void show bytes (pointer start, size t len) {
size t i;
for (1 = 0; 1 < len; i++)
printf (“%$p\t0x%.2x\n" ,start+i, start[i]);
printf ("\n") ;

}

Printf directives:
%p: Print pointer
%X: Print Hexadecimal
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show bytes Execution Example

int a = 15213;
printf ("int a = 15213;\n");
show bytes ((pointer) &a, sizeof (int));

Result (Linux x86-64):

int a = 15213;

Ox7fffb7f71dbc od
Ox7fffb7f71dbd 3b
Ox7fffb7f71dbe 00
Ox7fffb7f71dbf 00
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Representing Pointers

int B = -15213;
int *P = &B;
Sun I1A32 x86-64
EF AC 3C
FF 28 1B
FB F'5 FE
2C FF 82
FD
7F
00
00

Different compilers & machines assign different locations to objects
Even get different results each time run program
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Representing Strings

char S[6] = "18213";
m StringsinC
= Represented by array of characters
® Each character encoded in ASCII format IA32 Sun
= Standard 7-bit encoding of character set 31 | | 31
= Character “0” has code 0x30 38 |+ | 38
— Digit i has code 0x30+i 32 | SIEY
= String should be null-terminated 31 | o 31
= Final character =0 33 |1 J 33
m Compatibility 00 I J 00

= Byte ordering not an issue
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Reading Byte-Reversed Listings

m Disassembly
= Text representation of binary machine code
= Generated by program that reads the machine code

m Example Fragment

Address Instruction Code Assembly Rendition
8048365: 5b pop sebx
8048366: 81l c3 ab 12 00 0O add $0x12ab, $ebx

804836c: 83 bb 28 00X0 00 00 cmpl F0x0, 0x28 (%ebx)

m Deciphering Numbers

= Value: O0x1l2ab
= Pad to 32 bits: 0x000012ab
= Split into bytes: 00 00 12 ab
" Reverse: ab 12 00 00
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Integer C Puzzles

x <0 = ((x*2) < 0)
ux >= 0
x &7 == 17 = (x<<30) < 0
ux > -1
X >y = -X < -y
x * x >0
Initialization x>04&&y>0
x >0
x <=0
int y = bar(); (x| -x)>>31 == -1
unsigned ux = x; ux >> 3 == ux/8
x >> 3 == x/8
x & (x-1) '=0

x+y >0
-x <=0
-x >= 0

4

int x = foo();

U

unsigned uy = y;

XX I XX XXXXCN\X
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Summary

m Representing information as bits
m Bit-level manipulations

m Integers
= Representation: unsigned and signed
= Conversion, casting
= Expanding, truncating
= Addition, negation, multiplication, shifting

m Representations in memory, pointers, strings
= Summary
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