Bits, Bytes, and Integers – Part 2

15-213: Introduction to Computer Systems
3rd Lecture, Sept. 6, 2016

Today’s Instructor:
Randy Bryant
First Assignment: Data Lab

- Due: Thursday, Sept. 15th 2016, 11:59:00 pm
- Last Possible Time to Turn in: Sunday, Sept. 18th, 11:59PM
- Read the instructions carefully: writeup, bits.c, tests.c
- Seek help
 - Office hours already running
 - Recitation, Monday Sept. 12
- Based on Lecture 2, 3, and 4 (CS:APP Chapter 2)
- After today’s lecture you know everything for the integer problems, float problems covered on Tuesday
Linux Boot Camp

- Tonight, Tuesday, Sept. 6
 - 7:30-9:00 pm
 - Rashid Auditorium

- Bring your laptop

- Open to undergrads and masters students
Summary From Last Lecture

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary
Encoding Integers

Unsigned

\[B2U(X) = \sum_{i=0}^{w-1} x_i \cdot 2^i \]

Two’s Complement

\[B2T(X) = -x_{w-1} \cdot 2^{w-1} + \sum_{i=0}^{w-2} x_i \cdot 2^i \]

Two’s Complement Examples (w = 5)

-16 8 4 2 1

10 = 0 1 0 1 0 8 + 2 = 10

-16 8 4 2 1

-10 = 1 0 1 1 0 -16 + 4 + 2 = -10
Unsigned & Signed Numeric Values

<table>
<thead>
<tr>
<th>X</th>
<th>B2U(X)</th>
<th>B2T(X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>−8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>−7</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>−6</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>−5</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>−4</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>−3</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>−2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>−1</td>
</tr>
</tbody>
</table>

Equivalence
- Same encodings for nonnegative values

Uniqueness
- Every bit pattern represents unique integer value
- Each representable integer has unique bit encoding

Expression containing signed and unsigned int:

```
int is cast to unsigned
```
Sign Extension and Truncation

- **Sign Extension**

- **Truncation**
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary
Unsigned Addition

Operands: \(w \) bits

True Sum: \(w+1 \) bits

Discard Carry: \(w \) bits

\[u \quad + \quad v \quad \rightarrow \quad u + v \quad \text{UAdd}_w(u, v) \]

- **Standard Addition Function**
 - Ignores carry output
- **Implements Modular Arithmetic**
 \[s = \text{UAdd}_w(u, v) = u + v \mod 2^w \]

<table>
<thead>
<tr>
<th>Hex</th>
<th>Decimal</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0001</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0010</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0011</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>0100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>0111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>1111</td>
</tr>
</tbody>
</table>

- **Examples**

\[
\begin{align*}
\text{unsigned char} & \quad 1110\ 1001 \quad \text{E9} \quad 223 \\
+\quad & 1101\ 0101 \quad +\quad \text{D5} \quad +\quad 213 \\
\hline
1\ 1011\ 1110 \quad \text{1BE} \quad 446 \\
1011\ 1110 \quad \text{BE} \quad 190
\end{align*}
\]
Visualizing (Mathematical) Integer Addition

Integer Addition
- 4-bit integers u, v
- Compute true sum $\text{Add}_4(u, v)$
- Values increase linearly with u and v
- Forms planar surface
Visualizing Unsigned Addition

- Wraps Around
 - If true sum $\geq 2^w$
 - At most once

True Sum
- 2^w
- 2^{w+1}
- 0

Modular Sum

Overflow

$UAdd_4(u, v)$
Two’s Complement Addition

Operands: \(w \) bits

\[
\begin{array}{c}
\text{u} \\
\text{v}
\end{array}
\]

True Sum: \(w+1 \) bits

\[
\begin{array}{c}
\text{u} + \text{v} \\
\hline
\end{array}
\]

Discard Carry: \(w \) bits

\[
\text{TAdd}_w(u, v)
\]

- **TAdd and UAdd have Identical Bit-Level Behavior**
 - Signed vs. unsigned addition in C:

    ```
    int s, t, u, v;
    s = (int) ((unsigned) u + (unsigned) v);
    t = u + v
    ```
 - Will give \(s == t \)

\[
\begin{array}{c}
1110 1001 & E9 & -23 \\
+ 1101 0101 & + D5 & + -43 \\
\hline
1 1011 1110 & 1BE & 446 \\
1011 1110 & BE & -66
\end{array}
\]
TAdd Overflow

Functionality
- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

<table>
<thead>
<tr>
<th>True Sum</th>
<th>TAdd Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>2^{w-1}</td>
<td>011...1</td>
</tr>
<tr>
<td>0</td>
<td>000...0</td>
</tr>
<tr>
<td>-2^{w-1}</td>
<td>101...1</td>
</tr>
<tr>
<td>-2^w</td>
<td>100...0</td>
</tr>
</tbody>
</table>

Example:
- **Positive Overflow (PosOver):**
 - True Sum: 011...1
 - TAdd Result: 011...1
- **Negative Overflow (NegOver):**
 - True Sum: 101...1
 - TAdd Result: 100...0
Visualizing 2’s Complement Addition

- **Values**
 - 4-bit two’s comp.
 - Range from -8 to +7

- **Wraps Around**
 - If sum $\geq 2^{w-1}$
 - Becomes negative
 - At most once
 - If sum $< -2^{w-1}$
 - Becomes positive
 - At most once
Characterizing TAdd

Functionality

- True sum requires $w+1$ bits
- Drop off MSB
- Treat remaining bits as 2’s comp. integer

\[
TAdd_w(u, v) = \begin{cases}
 u + v + 2^w & u + v < TMin_w \quad \text{(NegOver)} \\
 u + v & TMin_w \leq u + v \leq TMax_w \\
 u + v - 2^w & TMax_w < u + v \quad \text{(PosOver)}
\end{cases}
\]

- **Positive Overflow**
- **Negative Overflow**
Multiplication

- **Goal:** Computing Product of w-bit numbers x, y
 - Either signed or unsigned

- **But, exact results can be bigger than w bits**
 - **Unsigned:** up to $2w$ bits
 - Result range: $0 \leq x \times y \leq (2^w - 1)^2 = 2^{2w} - 2^{w+1} + 1$
 - **Two’s complement min (negative):** Up to $2w-1$ bits
 - Result range: $x \times y \geq (-2^{w-1}) \times (2^{w-1} - 1) = -2^{2w-2} + 2^{w-1}$
 - **Two’s complement max (positive):** Up to $2w$ bits, but only for $(TMin_w)^2$
 - Result range: $x \times y \leq (-2^{w-1})^2 = 2^{2w-2}$

- **So, maintaining exact results...**
 - would need to keep expanding word size with each product computed
 - is done in software, if needed
 - e.g., by “arbitrary precision” arithmetic packages
Unsigned Multiplication in C

Operands: \(w \) bits

True Product: \(2w \) bits

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**

\[
\text{UMult}_w(u, v) = u \cdot v \mod 2^w
\]

\[
\begin{array}{cccc}
1110 & 1001 & \cdot & E9 \\
\ast & 1101 & 0101 & \ast & D5 \\
\hline
1100 & 0001 & 1101 & 1101 & \ast & C1DD \\
1101 & 1101 & DD & 221
\end{array}
\]
Signed Multiplication in C

Operands: \(w \) bits

\[u \quad \star \quad v \]

True Product: \(2^w \) bits

\[u \cdot v \]

Discard \(w \) bits: \(w \) bits

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits
 - Some of which are different for signed vs. unsigned multiplication
 - Lower bits are the same

\[
\begin{array}{cccc}
1110 & 1001 & \star & \text{E9} & \star & -23 \\
1101 & 0101 & \star & \text{D5} & \star & -43 \\
0000 & 0011 & 1101 & 1101 & \star & 03DD & 989 \\
1101 & 1101 & \star & \text{DD} & \star & -35 \\
\end{array}
\]
Power-of-2 Multiply with Shift

- **Operation**
 - \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned

 Operands: \(w \) bits
 True Product: \(w+k \) bits
 Discard \(k \) bits: \(w \) bits

 \[
 \begin{array}{c}
 u \ll k \\
 \times 2^k \\
 \end{array}
 \]

 - **UMult** \(w(u, 2^k) \)
 - **TMult** \(w(u, 2^k) \)

- **Examples**
 - \(u \ll 3 \) \(== \) \(u \times 8 \)
 - \((u \ll 5) - (u \ll 3) \) \(== \) \(u \times 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Unsigned Power-of-2 Divide with Shift

- Quotient of Unsigned by Power of 2
 - \(u \gg k \) gives \(\lfloor u / 2^k \rfloor \)
 - Uses logical shift

Operands:

- \(u \):
- \(\frac{u}{2^k} \):

Division:

\[
\begin{array}{c}
\frac{u}{2^k} = 0.0000000011011011
\end{array}
\]

Result:

\[
\lfloor \frac{u}{2^k} \rfloor = 0.0000000001010001
\]

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>x >> 1</td>
<td>7606.5</td>
<td>1D B6</td>
<td>00011101 10110110</td>
</tr>
<tr>
<td>x >> 4</td>
<td>950.8125</td>
<td>03 B6</td>
<td>00000011 10110110</td>
</tr>
<tr>
<td>x >> 8</td>
<td>59.4257813</td>
<td>00 3B</td>
<td>00000000 00111011</td>
</tr>
</tbody>
</table>
Signed Power-of-2 Divide with Shift

- **Quotient of Signed by Power of 2**
 - $x \gg k$ gives $\lfloor x / 2^k \rfloor$
 - Uses arithmetic shift
 - Rounds wrong direction when $u < 0$

\[
x \gg k \text{ gives } \lfloor x / 2^k \rfloor
\]

Operands:

<table>
<thead>
<tr>
<th>Division</th>
<th>Computed</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>$y \gg 1$</td>
<td>-7606.5</td>
<td>E2 49</td>
<td>11100010 01001001</td>
</tr>
<tr>
<td>$y \gg 4$</td>
<td>-950.8125</td>
<td>FC 49</td>
<td>11111100 01001001</td>
</tr>
<tr>
<td>$y \gg 8$</td>
<td>-59.4257813</td>
<td>FF C4</td>
<td>11111111 11000100</td>
</tr>
</tbody>
</table>
Correct Power-of-2 Divide

- Quotient of Negative Number by Power of 2
 - Want \(\lfloor x / 2^k \rfloor \) (Round Toward 0)
 - Compute as \(\lfloor (x+2^k-1) / 2^k \rfloor \)
 - In C: \((x + (1<<k)-1) >> k\)
 - Biases dividend toward 0

Case 1: No rounding

Dividend:
\[
\begin{array}{c}
\text{u} \\
\hline
1 \cdots 0 \cdots 0 \cdots 0 \\
0 \cdots 0 \cdots 1 \cdots 1 \\
\end{array}
\]

\[+2^k-1\]
\[
\begin{array}{c}
\text{u} \\
\hline
1 \cdots 0 \cdots 1 \cdots 1 \\
0 \cdots 0 \cdots 1 \cdots 0 \\
\end{array}
\]

Divisor:
\[
\begin{array}{c}
\text{u} \\
\hline
1 \cdots 0 \cdots 0 \cdots 0 \\
0 \cdots 0 \cdots 1 \cdots 0 \\
\end{array}
\]

\[2^k\]
\[
\begin{array}{c}
\text{u} \\
\hline
1 \cdots 1 \cdots 1 \cdots 1 \\
1 \cdots 1 \cdots 1 \cdots 1 \\
\end{array}
\]

Biasing has no effect
Correct Power-of-2 Divide (Cont.)

Case 2: Rounding

Dividend:

\[
\begin{array}{c|c|c|c|c|c|c}
& & & & & & \\
\hline
\text{Divisor:} & l & \quad 2^k & \left\lfloor \frac{x}{2^k} \right\rfloor & & & \\
\hline
\text{Incremented by 1} & & & & & & \\
\hline
\text{Binary Point} & & & & & & \\
\text{Incremented by 1} & & & & & & \\
\hline
\end{array}
\]

Biasing adds 1 to final result
Negation: Complement & Increment

- Negate through complement and increase
 \[\neg x + 1 = -x \]

- Example
 - Observation: \[\neg x + x = 1111\ldots111 = -1 \]

\[
\begin{array}{c}
x \quad 100111101 \\
+ \quad \neg x \\ [-1] \\
\hline
111111111
\end{array}
\]

\[x = 15213 \]

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>15213</td>
<td>3B 6D</td>
<td>00111011 01101101</td>
</tr>
<tr>
<td>(\neg x)</td>
<td>-15214</td>
<td>C4 92</td>
<td>11000100 10010010</td>
</tr>
<tr>
<td>(\neg x + 1)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
<tr>
<td>(y)</td>
<td>-15213</td>
<td>C4 93</td>
<td>11000100 10010011</td>
</tr>
</tbody>
</table>
Complement & Increment Examples

$x = 0$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
<tr>
<td>~0</td>
<td>-1</td>
<td>FF FF</td>
<td>11111111 11111111</td>
</tr>
<tr>
<td>~0+1</td>
<td>0</td>
<td>00 00</td>
<td>00000000 00000000</td>
</tr>
</tbody>
</table>

$x = TMin$

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
<tr>
<td>~x</td>
<td>32767</td>
<td>7F FF</td>
<td>01111111 11111111</td>
</tr>
<tr>
<td>~x+1</td>
<td>-32768</td>
<td>80 00</td>
<td>10000000 00000000</td>
</tr>
</tbody>
</table>

Canonical counter example
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Arithmetic: Basic Rules

- **Addition:**
 - Unsigned/signed: Normal addition followed by truncate, same operation on bit level
 - Unsigned: addition mod 2^w
 - Mathematical addition + possible subtraction of 2^w
 - Signed: modified addition mod 2^w (result in proper range)
 - Mathematical addition + possible addition or subtraction of 2^w

- **Multiplication:**
 - Unsigned/signed: Normal multiplication followed by truncate, same operation on bit level
 - Unsigned: multiplication mod 2^w
 - Signed: modified multiplication mod 2^w (result in proper range)
Why Should I Use Unsigned?

- *Don’t* use without understanding implications
 - Easy to make mistakes

    ```c
    unsigned i;
    for (i = cnt-2; i >= 0; i--)
        a[i] += a[i+1];
    ```

 - Can be very subtle

    ```c
    #define DELTA sizeof(int)
    int i;
    for (i = CNT; i-DELTA >= 0; i-= DELTA)
        ...
    ```
Counting Down with Unsigned

- **Proper way to use unsigned as loop index**

  ```
  unsigned i;
  for (i = cnt-2; i < cnt; i--)
    a[i] += a[i+1];
  ```

- **See Robert Seacord, Secure Coding in C and C++**
 - C Standard guarantees that unsigned addition will behave like modular arithmetic
 - $0 - 1 \rightarrow \text{UMax}$

- **Even better**

  ```
  size_t i;
  for (i = cnt-2; i < cnt; i--)
    a[i] += a[i+1];
  ```
 - Data type `size_t` defined as unsigned value with length = word size
 - Code will work even if `cnt = \text{UMax}`
 - What if `cnt` is signed and < 0?
Why Should I Use Unsigned? (cont.)

- **Do Use When Performing Modular Arithmetic**
 - Multiprecision arithmetic

- **Do Use When Using Bits to Represent Sets**
 - Logical right shift, no sign extension

- **Do Use In System Programming**
 - Bit masks, device commands,...
Integer Arithmetic Example

unsigned char

\[
\begin{array}{c}
1111 \ 0011 \\
+ \ 0101 \ 0010 \\
\hline
1 \ 0100 \ 0101 \\
0101 \ 0101
\end{array}
\]

\[
\begin{array}{c}
\text{F3} \\
\text{52} \\
\hline
145 \\
45
\end{array}
\]

\[
\begin{array}{c}
243 \\
82 \\
\hline
325 \\
69
\end{array}
\]

Hex	**Decimal**	**Binary**
0 | 0 | 0000
1 | 1 | 0001
2 | 2 | 0010
3 | 3 | 0011
4 | 4 | 0100
5 | 5 | 0101
6 | 6 | 0110
7 | 7 | 0111
8 | 8 | 1000
9 | 9 | 1001
A | 10 | 1010
B | 11 | 1011
C | 12 | 1100
D | 13 | 1101
E | 14 | 1110
F | 15 | 1111
Today: Bits, Bytes, and Integers

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
 - Summary
- Representations in memory, pointers, strings
Byte-Oriented Memory Organization

- Programs refer to data by address
 - Conceptually, envision it as a very large array of bytes
 - In reality, it’s not, but can think of it that way
 - An address is like an index into that array
 - and, a pointer variable stores an address

- Note: system provides private address spaces to each “process”
 - Think of a process as a program being executed
 - So, a program can clobber its own data, but not that of others
Machine Words

- Any given computer has a “Word Size”
 - Nominal size of integer-valued data
 - and of addresses
 - Until recently, most machines used 32 bits (4 bytes) as word size
 - Limits addresses to 4GB (2^{32} bytes)
 - Increasingly, machines have 64-bit word size
 - Potentially, could have 18 EB (exabytes) of addressable memory
 - That’s 18.4×10^{18}
 - Machines still support multiple data formats
 - Fractions or multiples of word size
 - Always integral number of bytes
Word-Oriented Memory Organization

- **Addresses Specify Byte Locations**
 - Address of first byte in word
 - Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)

<table>
<thead>
<tr>
<th>32-bit Words</th>
<th>64-bit Words</th>
<th>Bytes</th>
<th>Addr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addr = 0000</td>
<td>Addr = 0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>Addr = 0004</td>
<td></td>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>Addr = 0008</td>
<td></td>
<td>0002</td>
<td>0002</td>
</tr>
<tr>
<td>Addr = 0012</td>
<td></td>
<td>0003</td>
<td>0003</td>
</tr>
</tbody>
</table>

- Addresses Specify Byte Locations
- Address of first byte in word
- Addresses of successive words differ by 4 (32-bit) or 8 (64-bit)
Example Data Representations

<table>
<thead>
<tr>
<th>C Data Type</th>
<th>Typical 32-bit</th>
<th>Typical 64-bit</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>char</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>short</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>int</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>long</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>float</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>double</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>pointer</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>
Byte Ordering

- So, how are the bytes within a multi-byte word ordered in memory?

- Conventions
 - Big Endian: Sun, PPC Mac, Internet
 - Least significant byte has highest address
 - Little Endian: x86, ARM processors running Android, iOS, and Windows
 - Least significant byte has lowest address
Byte Ordering Example

Example
- Variable x has 4-byte value of 0x01234567
- Address given by &x is 0x100

<table>
<thead>
<tr>
<th>Big Endian</th>
<th>0x100 0x101 0x102 0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01 23 45 67</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Little Endian</th>
<th>0x100 0x101 0x102 0x103</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>67 45 23 01</td>
</tr>
</tbody>
</table>
Representing Integers

\[
\text{int } A = 15213;
\]

<table>
<thead>
<tr>
<th>IA32, x86-64</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>6D</td>
<td>00</td>
</tr>
<tr>
<td>3B</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>3B</td>
</tr>
<tr>
<td>00</td>
<td>6D</td>
</tr>
</tbody>
</table>

Increasing addresses

\[
\text{long int } C = 15213;
\]

<table>
<thead>
<tr>
<th>IA32</th>
<th>x86-64</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>6D</td>
<td>6D</td>
<td>00</td>
</tr>
<tr>
<td>3B</td>
<td>3B</td>
<td>00</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>3B</td>
</tr>
<tr>
<td>00</td>
<td>00</td>
<td>6D</td>
</tr>
</tbody>
</table>

Two’s complement representation

\[
\text{int } B = -15213;
\]

<table>
<thead>
<tr>
<th>IA32, x86-64</th>
<th>Sun</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>FF</td>
</tr>
<tr>
<td>C4</td>
<td>FF</td>
</tr>
<tr>
<td>FF</td>
<td>C4</td>
</tr>
<tr>
<td>FF</td>
<td>93</td>
</tr>
</tbody>
</table>

Decimal: 15213
Binary: 0011 1011 0110 1101
Hex: 3 B 6 D
Examining Data Representations

- Code to Print Byte Representation of Data
 - Casting pointer to unsigned char * allows treatment as a byte array

```c
typedef unsigned char *pointer;

void show_bytes(pointer start, size_t len){
    size_t i;
    for (i = 0; i < len; i++)
        printf("%p	0x%.2x\n",start+i, start[i]);
    printf("\n");
}
```

Printf directives:
- `%p`: Print pointer
- `%x`: Print Hexadecimal
show_bytes Execution Example

```c
int a = 15213;
printf("int a = 15213;\n");
show_bytes((pointer) &a, sizeof(int));
```

Result (Linux x86-64):

```c
int a = 15213;
0x7ffffff71dbc  6d
0x7ffffff71dbd  3b
0x7ffffff71dbe  00
0x7ffffff71dbf  00
```
Representing Pointers

```c
int B = -15213;
int *P = &B;
```

<table>
<thead>
<tr>
<th></th>
<th>Sun</th>
<th>IA32</th>
<th>x86-64</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF</td>
<td></td>
<td>AC</td>
<td>3C</td>
</tr>
<tr>
<td>FF</td>
<td></td>
<td>28</td>
<td>1B</td>
</tr>
<tr>
<td>FB</td>
<td></td>
<td>F5</td>
<td>FE</td>
</tr>
<tr>
<td>2C</td>
<td></td>
<td>FF</td>
<td>82</td>
</tr>
</tbody>
</table>

Different compilers & machines assign different locations to objects

Even get different results each time run program
Representing Strings

- **Strings in C**
 - Represented by array of characters
 - Each character encoded in ASCII format
 - Standard 7-bit encoding of character set
 - Character “0” has code 0x30
 - Digit i has code 0x30+i
 - String should be null-terminated
 - Final character = 0

- **Compatibility**
 - Byte ordering not an issue

```c
char S[6] = "18213";
```
Reading Byte-Reversed Listings

- **Disassembly**
 - Text representation of binary machine code
 - Generated by program that reads the machine code

- **Example Fragment**

<table>
<thead>
<tr>
<th>Address</th>
<th>Instruction Code</th>
<th>Assembly Rendition</th>
</tr>
</thead>
<tbody>
<tr>
<td>8048365:</td>
<td>5b</td>
<td>pop %ebx</td>
</tr>
<tr>
<td>8048366:</td>
<td>81 c3 ab 12 00 00</td>
<td>add $0x12ab,%ebx</td>
</tr>
<tr>
<td>804836c:</td>
<td>83 bb 28 00 00 00</td>
<td>cmpl $0x0,0x28(%ebx)</td>
</tr>
</tbody>
</table>

- **Deciphering Numbers**
 - **Value:** 0x12ab
 - **Pad to 32 bits:** 0x000012ab
 - **Split into bytes:** 00 00 12 ab
 - **Reverse:** ab 12 00 00
Integer C Puzzles

\[
\begin{align*}
x < 0 & \quad \Rightarrow \quad (x \times 2) < 0 & \times \\
u_x \geq 0 & \quad \Rightarrow \quad (x \ll 30) < 0 & \checkmark \\
x \& 7 = 7 & \quad \Rightarrow \quad (x \ll 30) < 0 & \checkmark \\
u_x > -1 & \quad \Rightarrow \quad (x \ll 30) < 0 & \times \\
x > y & \quad \Rightarrow \quad -x < -y & \times \\
x \times x \geq 0 & \quad \Rightarrow \quad (x | -x) \gg 31 = -1 & \times \\
x > 0 \& \& y > 0 & \quad \Rightarrow \quad x + y > 0 & \times \\
x \geq 0 & \quad \Rightarrow \quad -x \leq 0 & \checkmark \\
x \leq 0 & \quad \Rightarrow \quad -x \geq 0 & \times \\
(x | -x) \gg 31 = -1 & \quad \Rightarrow \quad -x \geq 0 & \times \\
u_x \gg 3 = u_x / 8 & \quad \Rightarrow \quad -x \geq 0 & \times \\
x \gg 3 = x / 8 & \quad \Rightarrow \quad -x \geq 0 & \times \\
x \& (x - 1) \neq 0 & \quad \Rightarrow \quad -x \geq 0 & \times \\
\end{align*}
\]

Initialization

```c
int x = foo();
int y = bar();
unsigned ux = x;
unsigned uy = y;
```
Summary

- Representing information as bits
- Bit-level manipulations
- Integers
 - Representation: unsigned and signed
 - Conversion, casting
 - Expanding, truncating
 - Addition, negation, multiplication, shifting
- Representations in memory, pointers, strings
- Summary