
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bits, Bytes and Integers – Part 1

15-213/18-213/15-513: Introduction to Computer Systems
2nd Lecture, Sept. 1, 2016

Today’s Instructor:

Phil Gibbons

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Announcements

 Recitations are on Mondays, but next Monday (9/5) is
Labor Day, so recitations are cancelled

 We will schedule a Linux Boot Camp some time next week

 Lab 1 is now available via Autolab. Those of you who do
not yet have Autolab accounts can get a copy of the
documentation and the supplied files from the schedule
web page. You can work on this lab using one of the class
(Shark) machines, or one of the Andrew Linux machines.

https://autolab.andrew.cmu.edu/courses/15213-f16
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f16/www/schedule.html
http://www.cs.cmu.edu/afs/cs/academic/class/15213-f16/www/labmachines.html

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Autolab accounts

 Students enrolled 10am on Mon, Aug 29 have Autolab
accounts

 You must be enrolled to get an account
 Autolab is not tied in to the Hub’s rosters

 If you add in, contact 15-213-staff@cs.cmu.edu for an account

 We will update the autolab accounts once a day, so check back in 24
hours

 For those who are waiting to add in, the first lab (datalab)
is available on the Schedule page of the course Web site.

mailto:15-213-staff@cs.cmu.edu

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Waitlist questions

 15-213: Catherine Fichtner (cathyf@cs.cmu.edu)

 18-213: Zara Collier (zcollier@andrew.cmu.edu)

 15-513: Catherine Fichtner (cathyf@cs.cmu.edu)

 Please don’t contact the instructors with waitlist
questions.

mailto:cathyf@cs.cmu.edu

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Everything is bits

 Each bit is 0 or 1

 By encoding/interpreting sets of bits in various ways
 Computers determine what to do (instructions)

 … and represent and manipulate numbers, sets, strings, etc…

 Why bits? Electronic Implementation
 Easy to store with bistable elements

 Reliably transmitted on noisy and inaccurate wires

0.0V

0.2V

0.9V

1.1V

0 1 0

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

For example, can count in binary

 Base 2 Number Representation
 Represent 1521310 as 111011011011012

 Represent 1.2010 as 1.0011001100110011[0011]…2

 Represent 1.5213 X 104 as 1.11011011011012 X 213

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Byte Values

 Byte = 8 bits
 Binary 000000002 to 111111112

 Decimal: 010 to 25510

 Hexadecimal 0016 to FF16

 Base 16 number representation

 Use characters ‘0’ to ‘9’ and ‘A’ to ‘F’

 Write FA1D37B16 in C as

– 0xFA1D37B

– 0xfa1d37b

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

15213: 0011 1011 0110 1101

3 B 6 D

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example Data Representations

C Data Type Typical 32-bit Typical 64-bit x86-64

char 1 1 1

short 2 2 2

int 4 4 4

long 4 8 8

float 4 4 4

double 8 8 8

pointer 4 8 8

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Boolean Algebra

 Developed by George Boole in 19th Century
 Algebraic representation of logic

 Encode “True” as 1 and “False” as 0

And

 A&B = 1 when both A=1 and B=1

Or

 A|B = 1 when either A=1 or B=1

Not

 ~A = 1 when A=0

Exclusive-Or (Xor)

 A^B = 1 when either A=1 or B=1, but not both

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

General Boolean Algebras

 Operate on Bit Vectors
 Operations applied bitwise

 All of the Properties of Boolean Algebra Apply

01101001

& 01010101

01000001

01101001

| 01010101

01111101

01101001

^ 01010101

00111100

~ 01010101

1010101001000001 01111101 00111100 10101010

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Example: Representing & Manipulating Sets

 Representation
 Width w bit vector represents subsets of {0, …, w–1}

 aj = 1 if j ∈ A

 01101001 { 0, 3, 5, 6 }

 76543210

 01010101 { 0, 2, 4, 6 }

 76543210

 Operations
 & Intersection 01000001 { 0, 6 }

 | Union 01111101 { 0, 2, 3, 4, 5, 6 }

 ^ Symmetric difference 00111100 { 2, 3, 4, 5 }

 ~ Complement 10101010 { 1, 3, 5, 7 }

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102

 ~0x00 → 0xFF

 ~000000002 → 111111112

 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012

 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~010000012 → 101111102

 ~0x00 → 0xFF

 ~000000002 → 111111112

 0x69 & 0x55 → 0x41

 011010012 & 010101012 → 010000012

 0x69 | 0x55 → 0x7D

 011010012 | 010101012 → 011111012

Bit-Level Operations in C

 Operations &, |, ~, ^ Available in C
 Apply to any “integral” data type

 long, int, short, char, unsigned

 View arguments as bit vectors

 Arguments applied bit-wise

 Examples (Char data type)
 ~0x41 → 0xBE

 ~0100 00012 → 1011 11102

 ~0x00 → 0xFF

 ~0000 00002 → 1111 11112

 0x69 & 0x55 → 0x41

 0110 10012 & 0101 01012 → 0100 00012

 0x69 | 0x55 → 0x7D

 0110 10012 | 0101 01012 → 0111 11012

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Contrast: Logic Operations in C

 Contrast to Bit-Level Operators
 Logic Operations: &&, ||, !

 View 0 as “False”

 Anything nonzero as “True”

 Always return 0 or 1

 Early termination

 Examples (char data type)
 !0x41 → 0x00

 !0x00 → 0x01

 !!0x41→ 0x01

 0x69 && 0x55 → 0x01

 0x69 || 0x55 → 0x01

 p && *p (avoids null pointer access)

Watch out for && vs. & (and || vs. |)…
one of the more common oopsies in
C programming

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Shift Operations

 Left Shift: x << y

 Shift bit-vector x left y positions

– Throw away extra bits on left

 Fill with 0’s on right

 Right Shift: x >> y

 Shift bit-vector x right y positions

 Throw away extra bits on right

 Logical shift

 Fill with 0’s on left

 Arithmetic shift

 Replicate most significant bit on left

 Undefined Behavior
 Shift amount < 0 or ≥ word size

01100010Argument x

00010000<< 3

00011000Log. >> 2

00011000Arith. >> 2

10100010Argument x

00010000<< 3

00101000Log. >> 2

11101000Arith. >> 2

0001000000010000

0001100000011000

0001100000011000

00010000

00101000

11101000

00010000

00101000

11101000

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

 Summary

Carnegie Mellon

19Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Encoding Integers

short int x = 15213;

short int y = -15213;

 C short 2 bytes long

 Sign Bit
 For 2’s complement, most significant bit indicates sign

 0 for nonnegative

 1 for negative

B2T (X)  xw1 2
w1

 xi 2
i

i0

w2

B2U(X)  xi 2
i

i0

w1



Unsigned Two’s Complement

Sign Bit

 Decimal Hex Binary
x 15213 3B 6D 00111011 01101101

y -15213 C4 93 11000100 10010011

Carnegie Mellon

20Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

8+2 = 10

-16+4+2 = -10

Carnegie Mellon

21Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Two-complement Encoding Example (Cont.)
x = 15213: 00111011 01101101

y = -15213: 11000100 10010011

Weight 15213 -15213

1 1 1 1 1
2 0 0 1 2
4 1 4 0 0
8 1 8 0 0

16 0 0 1 16
32 1 32 0 0
64 1 64 0 0

128 0 0 1 128
256 1 256 0 0
512 1 512 0 0

1024 0 0 1 1024
2048 1 2048 0 0
4096 1 4096 0 0
8192 1 8192 0 0

16384 0 0 1 16384
-32768 0 0 1 -32768

Sum 15213 -15213

Carnegie Mellon

22Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Numeric Ranges
 Unsigned Values

 UMin = 0

000…0

 UMax = 2w – 1

111…1

 Two’s Complement Values

 TMin = –2w–1

100…0

 TMax = 2w–1 – 1

011…1

 Minus 1

111…1

 Decimal Hex Binary
UMax 65535 FF FF 11111111 11111111

TMax 32767 7F FF 01111111 11111111

TMin -32768 80 00 10000000 00000000

-1 -1 FF FF 11111111 11111111

0 0 00 00 00000000 00000000

Values for W = 16

Carnegie Mellon

23Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Values for Different Word Sizes

 Observations
 |TMin | = TMax + 1

 Asymmetric range

 UMax = 2 * TMax + 1

 W

 8 16 32 64

UMax 255 65,535 4,294,967,295 18,446,744,073,709,551,615

TMax 127 32,767 2,147,483,647 9,223,372,036,854,775,807

TMin -128 -32,768 -2,147,483,648 -9,223,372,036,854,775,808

 C Programming
 #include <limits.h>

 Declares constants, e.g.,

 ULONG_MAX

 LONG_MAX

 LONG_MIN

 Values platform specific

Carnegie Mellon

24Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned & Signed Numeric Values
 Equivalence

 Same encodings for nonnegative
values

 Uniqueness
 Every bit pattern represents

unique integer value

 Each representable integer has
unique bit encoding

  Can Invert Mappings
 U2B(x) = B2U-1(x)

 Bit pattern for unsigned
integer

 T2B(x) = B2T-1(x)

 Bit pattern for two’s comp
integer

X B2T(X)B2U(X)

0000 0

0001 1

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

–88

–79

–610

–511

–412

–313

–214

–115

1000

1001

1010

1011

1100

1101

1110

1111

0

1

2

3

4

5

6

7

Carnegie Mellon

25Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

26Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Mapping Between Signed & Unsigned

U2T

U2B B2T

Two’s ComplementUnsigned

Maintain Same Bit Pattern

ux x
X

 Mappings between unsigned and two’s complement numbers:
Keep bit representations and reinterpret

Carnegie Mellon

27Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

U2T

T2U

Carnegie Mellon

28Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Mapping Signed  Unsigned
Signed

0

1

2

3

4

5

6

7

-8

-7

-6

-5

-4

-3

-2

-1

Unsigned

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Bits

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

=

+/- 16

Carnegie Mellon

29Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

+ + + + + +• • •

- + + + + +• • •

ux

x

w–1 0

Relation between Signed & Unsigned

Large negative weight
becomes

Large positive weight

T2U

T2B B2U

Two’s Complement Unsigned

Maintain Same Bit Pattern

x ux
X

Carnegie Mellon

30Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned
Range

Conversion Visualized

 2’s Comp.  Unsigned
 Ordering Inversion

 Negative  Big Positive

Carnegie Mellon

31Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signed vs. Unsigned in C

 Constants
 By default are considered to be signed integers

 Unsigned if have “U” as suffix

0U, 4294967259U

 Casting
 Explicit casting between signed & unsigned same as U2T and T2U

int tx, ty;

unsigned ux, uy;

tx = (int) ux;

uy = (unsigned) ty;

 Implicit casting also occurs via assignments and procedure calls

tx = ux; int fun(unsigned u);

uy = ty; uy = fun(tx);

Carnegie Mellon

32Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

0 0U == unsigned

-1 0 < signed

-1 0U > unsigned

2147483647 -2147483648 > signed

2147483647U -2147483648 < unsigned

-1 -2 > signed

(unsigned) -1 -2 > unsigned

2147483647 2147483648U < unsigned

2147483647 (int) 2147483648U > signed

Casting Surprises
 Expression Evaluation

 If there is a mix of unsigned and signed in single expression,
signed values implicitly cast to unsigned

 Including comparison operations <, >, ==, <=, >=

 Examples for W = 32: TMIN = -2,147,483,648 , TMAX = 2,147,483,647

 Constant1 Constant2 Relation Evaluation

0 0U

-1 0

-1 0U

2147483647 -2147483647-1

2147483647U -2147483647-1

-1 -2

(unsigned)-1 -2

2147483647 2147483648U

2147483647 (int) 2147483648U

Carnegie Mellon

33Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Unsigned vs. Signed: Easy to Make Mistakes

unsigned i;

for (i = cnt-2; i >= 0; i--)

a[i] += a[i+1];

 Can be very subtle

#define DELTA sizeof(int)

int i;

for (i = CNT; i-DELTA >= 0; i-= DELTA)

. . .

Carnegie Mellon

34Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary
Casting Signed ↔ Unsigned: Basic Rules

 Bit pattern is maintained

 But reinterpreted

 Can have unexpected effects: adding or subtracting 2w

 Expression containing signed and unsigned int
 int is cast to unsigned!!

Carnegie Mellon

35Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Summary

 Representations in memory, pointers, strings

Carnegie Mellon

36Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension

 Task:
 Given w-bit signed integer x

 Convert it to w+k-bit integer with same value

 Rule:
 Make k copies of sign bit:

 X  = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X  • • • • • •

• • •

w

wk

Carnegie Mellon

37Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Sign Extension: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

10 =

-32 16 8 4 2 1

0 0 1 0 1 0

-10 =

-16 8 4 2 1

1 1 1 1 0

-32 16 8 4 2 1

1 1 1 0 1 0-10 =

Positive number Negative number

Carnegie Mellon

38Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Larger Sign Extension Example

 Converting from smaller to larger integer data type

 C automatically performs sign extension

short int x = 15213;

int ix = (int) x;

short int y = -15213;

int iy = (int) y;

Decimal Hex Binary

x 15213 3B 6D 00111011 01101101

ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101

y -15213 C4 93 11000100 10010011

iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

Carnegie Mellon

39Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation

 Task:
 Given k+w-bit signed or unsigned integer X

 Convert it to w-bit integer X’ with same value for “small enough” X

 Rule:
 Drop top k bits:

 X  = xw–1 , xw–2 ,…, x0

• • •

• • •X 
w

X • • • • • •

wk

Carnegie Mellon

40Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Truncation: Simple Example

10 =

-16 8 4 2 1

0 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

-10 =

-16 8 4 2 1

1 0 1 1 0

6 =

-8 4 2 1

0 1 1 0

Sign change

2 =

-16 8 4 2 1

0 0 0 1 0

2 =

-8 4 2 1

0 0 1 0

-6 =

-16 8 4 2 1

1 1 0 1 0

-6 =

-8 4 2 1

1 0 1 0

No sign change

10 mod 16 = 10U mod 16 = 10U = -6

-10 mod 16 = 22U mod 16 = 6U = 6

2 mod 16 = 2

-6 mod 16 = 26U mod 16 = 10U = -6

Carnegie Mellon

41Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary:
Expanding, Truncating: Basic Rules

 Expanding (e.g., short int to int)
 Unsigned: zeros added

 Signed: sign extension

 Both yield expected result

 Truncating (e.g., unsigned to unsigned short)
 Unsigned/signed: bits are truncated

 Result reinterpreted

 Unsigned: mod operation

 Signed: similar to mod

 For small numbers yields expected behavior

Carnegie Mellon

42Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Summary of Today: Bits, Bytes, and Integers

 Representing information as bits

 Bit-level manipulations

 Integers
 Representation: unsigned and signed

 Conversion, casting

 Expanding, truncating

 Addition, negation, multiplication, shifting

 Representations in memory, pointers, strings

 Summary

