Carnegie Mellon

Recitation 9: Processes, Signals, TSHLab

Instructor: TAs

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Outline

m Cachelab Style
m Process Lifecycle
m Signal Handling

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Style Grading

m Cachelab grades will be available soon
= Click ‘view source’ on your latest submission to see our feedback

m Common mistakes
= Descriptions at the top of your file and functions.
= NULL checking for malloc/calloc and fopen.
= ERROR CHECKING IS KEY IN TSHLAB!
= Writing everything in main function without helpers.
" Lack of comments in general.

m The labs are hard, don’t lose points after your hard work.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Process “Lifecycle”

We will review each of these phases today
m Fork() — Create a duplicate, a “child”, of the process

m Execve() — Replace the running program

m Exit() — End the running program

m Waitpid() — Wait for a child

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Notes on Examples

m Full source code of all programs is available
= TAs may demo specific programs

m In the following examples, exit() is called
= We do this to be explicit about the program’s behavior
= Exit should generally be reserved for terminating on error

m Unless otherwise noted, all syscalls succeed
" Error checking code is omitted.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Processes are separate

m How many lines are printed?
m If pid is at address Ox7£££f2bcc264c, what is printed?

int main(int argc, char** argv)
{
pid t pid;
pid = fork ()
printf (“$p - %d\n”, &pid, pid);
exit (0) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

Carnegie Mellon

Processes Change

m What does this program print?

int main(int argc, char** argv)
{
char* args[3];
args[0] = “/bin/echo”;
args[l] = “Hi 18213!”;
args[2] = NULL;
execv (args[0], args);
printf (“Hi 15213'\n”) ;
exit (0) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

On Error

m How should we handle malloc failing?

const size t HUGE = 1 * 1024 * 1024 * 1024;
int main(int argc, char** argv)

{
char* buf = malloc (HUGE * HUGE) ;

printf ("Buf at %$p\n", buf);
exit (0) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

On Error
m How should we handle malloc failing?

const size_t HUGE =1 * 1024 * 1024 * 1024;

int main(int argc, char** argv)

{
char* buf = malloc (HUGE * HUGE) ;
if (buf == NULL)

{
fprintf (stderr, "Failure at %ul\n", LINE);
exit(l);

}

printf ("Buf at %$p\n", buf);

exit (0) ;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Exit values can convey information
m Two values are printed, describe their relation.

int main(int argc, char** argv)
{
pid t pid = fork();

if (pid == 0) { exit(getpid());}
else

{
int status = 0;
waitpid(pid, &status, 0);
printf (“0x%x exited with 0x%x\n”, pid,
WEXITSTATUS (status)) ;

exit (0) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Processes have ancestry

m Find the errors in this code, assume fork() and exit() are successful

int main(int argc, char** argv)
{
int status = 0, ret = 0;
pid t pid = fork();
if (pid == 0)
{
pid = fork();
exit (getpid())
}
ret = waitpid (-1, &status, 0);
printf (“Process %d exited with %d\n”, ret, status);
ret = waitpid (-1, &status, 0);
printf (“Process %d exited with %d\n”, ret, status);
exit(0);
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Process Graphs
m How many different sequences can be printed?

int main(int argc, char** argv)
{
int status;
pid t pid;
if (fork() == 0)
{
pid = fork () ;
printf (“HC: %d\n”, getpid());
if (pid == 0) {exit(0);}
}
pid = wait(&status);
printf (“BT: %d\n”, pid);
exit (0);
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Process Graphs
m How many different sequences can be printed?

int main(int argc, char** argv)
{
pid t pid;
char* tgt = “child”;
pid = fork() ;
if (pid == 0) {
pid = getppid(); // Get parent pid
tgt = “parent”;
}
kill (pid, 9);
printf (“Sent SIGKILL to %s:%d\n”, tgt, pid);
exit(0);
}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Signals and Handling

m Signals can happen at any time
= Control when through blocking signals

m Signals also communicate that events have occurred
= What event(s) correspond to each signal?

m Write separate routines for receiving (i.e., signals)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Blocking Signals
m What value(s) does this code print?

int counter = 0;
void handler (int sig) {counter++;}

int main(int argc, char** argv)
{
sigset_t mask, prev;

int i;

sigfillset (&mask) ;
sigprocmask (SIG_BLOCK, &mask, &prev);
signal (SIGCHLD, handler) ;
for (i = 0; i < 10; i++)
{
if (fork() == 0) {exit(0);}
}
sigprocmask (SIG_SETMASK, &prev, NULL);
printf (“%d\n”, counter);

return O;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Proper signhal handling

m For the previous code, how to handle the signals?
= \We want to count child exits.
= We don’t want to count exits until all 10 children are created.

m Discuss

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Proper signhal handling

m For the previous code, how to handle the signals?
= We want to count child exits.
= We don’t want to count exits until all 10 children are created.
= Print how many children have exited ahead of the parent

m Modify the code:
if (fork() == 0)
{
if (1 < 5) exit(0);
else while(1l) ;
}

m Discuss

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Carnegie Mellon

If you get stuck

m Read the writeup!
m Do manual unit testing before runtrace and sdriver!

m Read the writeup!
m Post private questions on piazza!

m Read the man pages on the syscalls.
= Especially the error conditions
= What errors should terminate the shell?
= What errors should be reported?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

