
Carnegie Mellon

1Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Recitation 9: Processes, Signals, TSHLab

Instructor: TAs

Carnegie Mellon

2Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Outline

 Cachelab Style

 Process Lifecycle

 Signal Handling

Carnegie Mellon

3Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Style Grading

 Cachelab grades will be available soon
 Click ‘view source’ on your latest submission to see our feedback

 Common mistakes
 Descriptions at the top of your file and functions.

 NULL checking for malloc/calloc and fopen.

 ERROR CHECKING IS KEY IN TSHLAB!

 Writing everything in main function without helpers.

 Lack of comments in general.

 The labs are hard, don’t lose points after your hard work.

Carnegie Mellon

4Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process “Lifecycle”

We will review each of these phases today

 Fork() – Create a duplicate, a “child”, of the process

 Execve() – Replace the running program

 Exit() – End the running program

 Waitpid() – Wait for a child

Carnegie Mellon

5Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Notes on Examples

 Full source code of all programs is available
 TAs may demo specific programs

 In the following examples, exit() is called
 We do this to be explicit about the program’s behavior

 Exit should generally be reserved for terminating on error

 Unless otherwise noted, all syscalls succeed
 Error checking code is omitted.

Carnegie Mellon

6Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes are separate

 How many lines are printed?

 If pid is at address 0x7fff2bcc264c, what is printed?

int main(int argc, char** argv)

{

pid_t pid;

pid = fork();

printf(“%p - %d\n”, &pid, pid);

exit(0);

}

Carnegie Mellon

7Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes Change

 What does this program print?

int main(int argc, char** argv)

{

char* args[3];

args[0] = “/bin/echo”;

args[1] = “Hi 18213!”;

args[2] = NULL;

execv(args[0], args);

printf(“Hi 15213!\n”);

exit(0);

}

Carnegie Mellon

8Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Error

 How should we handle malloc failing?

const size_t HUGE = 1 * 1024 * 1024 * 1024;

int main(int argc, char** argv)

{

char* buf = malloc(HUGE * HUGE);

printf("Buf at %p\n", buf);

exit(0);

}

Carnegie Mellon

9Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

On Error

 How should we handle malloc failing?

const size_t HUGE = 1 * 1024 * 1024 * 1024;

int main(int argc, char** argv)

{

char* buf = malloc(HUGE * HUGE);

if (buf == NULL)

{

fprintf(stderr, "Failure at %u\n", __LINE__);

exit(1);

}

printf("Buf at %p\n", buf);

exit(0);

}

Carnegie Mellon

10Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Exit values can convey information

 Two values are printed, describe their relation.

int main(int argc, char** argv)

{

pid_t pid = fork();

if (pid == 0) { exit(getpid());}

else

{

int status = 0;

waitpid(pid, &status, 0);

printf(“0x%x exited with 0x%x\n”, pid,

WEXITSTATUS(status));

}

exit(0);

}

Carnegie Mellon

11Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Processes have ancestry

 Find the errors in this code, assume fork() and exit() are successful

int main(int argc, char** argv)

{

int status = 0, ret = 0;

pid_t pid = fork();

if (pid == 0)

{

pid = fork();

exit(getpid());

}

ret = waitpid(-1, &status, 0);

printf(“Process %d exited with %d\n”, ret, status);

ret = waitpid(-1, &status, 0);

printf(“Process %d exited with %d\n”, ret, status);

exit(0);

}

Carnegie Mellon

12Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

 How many different sequences can be printed?

int main(int argc, char** argv)

{

int status;

pid_t pid;

if (fork() == 0)

{

pid = fork();

printf(“HC: %d\n”, getpid());

if (pid == 0) {exit(0);}

}

pid = wait(&status);

printf(“BT: %d\n”, pid);

exit(0);

}

Carnegie Mellon

13Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Process Graphs

 How many different sequences can be printed?

int main(int argc, char** argv)

{

pid_t pid;

char* tgt = “child”;

pid = fork();

if (pid == 0) {

pid = getppid(); // Get parent pid

tgt = “parent”;

}

kill(pid, 9);

printf(“Sent SIGKILL to %s:%d\n”, tgt, pid);

exit(0);

}

Carnegie Mellon

14Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Signals and Handling

 Signals can happen at any time
 Control when through blocking signals

 Signals also communicate that events have occurred
 What event(s) correspond to each signal?

 Write separate routines for receiving (i.e., signals)

Carnegie Mellon

15Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Blocking Signals

 What value(s) does this code print?

int counter = 0;

void handler(int sig) {counter++;}

int main(int argc, char** argv)

{

sigset_t mask, prev;

int i;

sigfillset(&mask);

sigprocmask(SIG_BLOCK, &mask, &prev);

signal(SIGCHLD, handler);

for (i = 0; i < 10; i++)

{

if (fork() == 0) {exit(0);}

}

sigprocmask(SIG_SETMASK, &prev, NULL);

printf(“%d\n”, counter);

return 0;

}

Carnegie Mellon

16Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling

 For the previous code, how to handle the signals?
 We want to count child exits.

 We don’t want to count exits until all 10 children are created.

 Discuss

Carnegie Mellon

17Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Proper signal handling

 For the previous code, how to handle the signals?
 We want to count child exits.

 We don’t want to count exits until all 10 children are created.

 Print how many children have exited ahead of the parent

 Modify the code:
if (fork() == 0)

{

if (i < 5) exit(0);

else while(1) ;

}

 Discuss

Carnegie Mellon

18Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

If you get stuck

 Read the writeup!

 Do manual unit testing before runtrace and sdriver!

 Read the writeup!

 Post private questions on piazza!

 Read the man pages on the syscalls.
 Especially the error conditions

 What errors should terminate the shell?

 What errors should be reported?

