Carnegie Mellon

Recitation 8: Exam Stack Review

15-213: Introduction to Computer Systems
October 17th, 2016

Instructor:
Your TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Midterm Exam This Week

m 4 hours
m 1 double-sided page of notes
= No preworked problems from prior exams

m 7 questions

m Report to the room
= TA will verify your notes and ID
= TAs will give you your exam server password

" Login via Andrew, then navigate to exam server and use special
exam password

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

Stack Review

m In the following questions, treat them like the exam
= Can you answer them from memory?
= Write down your answer
= Talk to your neighbor, do you agree?

m Discuss:
What is the stack used for?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Stack Manipulation

m We execute:

mov $0x15213, %rax
pushg %rax

m Which of the following instructions will place the value
0x15213 into %rcx?

1) mov (%rsp), %rcx
2) mov 0x8(%srsp), %srcx
3) mov 3rsp, %rcx
4) popg %rcx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Stack is memory

m We execute:

mov $0x15213, %rax
pushg %rax

popg srax

m If we now execute: mov -0x8 (%$rsp), %rcx
what value is in %rcx?

1) 0x0 / NULL
2) Seg fault
3) Unknown
4) 0x15213

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

x86-64 Calling Convention

m What does the calling convention govern?
1) How large each type is.
2) How to pass arguments to a function.
3) The alignment of fields in a struct.
4) When registers can be used by a function.
5) Whether a function can call itself.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

Carnegie Mellon

Register Usage

m The calling convention gives meaning to every register,
describe the following 9 registers:

Function Argument

$rdx Return Value

Callee Save

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

Carnegie Mellon

Register Usage

m The calling convention gives meaning to every register,
describe the following 9 registers:

Function Argument

oP°
H
(0]
Hl
o U1 B N W

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Register Usage

m Which line is the first violation of the calling convention?

mov $0x15213, %rax
push %rax

mov 0x10(%rsp), %rcx
mov %rbx, %rax

pop %rdx

push %rax

pop %rbx

mov %rcx, %rbx

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Register Usage

m Which line is the first violation of the calling convention?

mov $0x15213, %rax
push %rax

mov 0x10(%rsp), %rcx
mov %rbx, %rax

pop %rdx
push %rax
pop %rbx
@OV %rcx %rtD « Until this point, the callee has
! preserved the callee-save value.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Sometimes arguments are implicit

How many arguments does “rsr” take?

How many registers are changed before the function call?

(Note, %sil is the low 8 bits of %rsi)

0x0400596
0x040059a
0x040059c
0x04005a0
0x04005a4
0x04005a9
0x04005ad
0x04005ae
0x04005b0

<+0>:
<+4>:
<+6>:

<+10>:
<+14>:
<+19>:
<+23>:
<+24>:
<+26>:

cmp
Jje
sub
sub
callq
add
retq
mov

retq

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

%sil, (%rdi,%rdx,1)
0x4005ae <rsr+24>
$0x8,%rsp

$0x1, $rdx
0x400596 <rsr>
$0x8,%rsp

$edx, $eax

1

Carnegie Mellon

Arguments can already be “correct”

m rsr does not modify s and t, so the arguments in those
registers are always correct

int rsr(char* s, char t, size t pos)

{
if (s[pos] J= t)/ return pos;
return rsr(s, t, pos - 1),

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Recursive calls

m Describe the stack after doThis(4) returns.

void doThis (int count)

{
char buf[8];
strncpy (buf, “Hi 15213”, sizeof (buf))
if (count > 0) doThis(count - 1);

}

push %rbx

sub $0x10, %rsp

mov %$edi, $ebx

movabs $0x3331323531206948, %rax

mov $rax, (%rsp)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

