
15-213 Recitation 7: Caches and Blocking

10 Oct 2016

Agenda

Reminders

Revisiting cachelab

Caching Review

Blocking to reduce cache misses

Reminders

Cache Lab is due Thursday!

Exam1 is just a week away!

Start doing practice problems.

Come to the review session.

Image credit: flickr.com / kellt825@yahoo.com

CC-BY-SA 2.0

Reminders: Cache Lab

• Two parts

• Write a cache simulator – hopefully you've started this part by

now

• Optimize some code to minimize cache misses – we'll talk about

this today

• Programming style will be graded starting now

• Worth about a letter grade on this assignment

• Summary slide is included as an appendix to this recitation and

covered in last week’s recitation, but be sure to carefully read the

style guide

• Details are in the writeup!

Cache Lab: Cache Simulator Hints

• You are simply counting hits, misses, and evictions

• Use LRU (Least Recently Used) replacement policy

• Structs are a great way to bundle up the different parts of a cache
line (valid bit, tag, LRU counter, etc.)

• A cache is just a 2D array of cache lines

• one dimension represents associativity E, the other the number of
sets S:

struct cache_line cache[S][E];

• Your simulator needs to handle different values of S, E, and b (block
size) given at run time

Cache Lab: Parsing Input with fscanf

• fscanf() is exactly like scanf() except that you specify a stream to use

(i.e. an open file) instead of always reading from standard input

• The parameters to fscanf are

1. a stream pointer of type FILE*, e.g. from fopen()

2. a format string specifying how to parse the input

3-n. a pointer to each of the variables that will store the parsed data

• fscanf() returns -1 if the data does not match the format string or

there is no more input

• Use it to parse the trace files

fscanf() Example

FILE *pFile; /* pointer to FILE object */

pFile = fopen(“trace.txt”,”r”); /* open trace file for reading */

/* verify that pFile is non-NULL! */

char access_type;

unsigned long address;

int size;

/* line format is “ S 2f,1” or “ L 7d0,3” */

/* so we need to read a character, a hex number, and a decimal number */

/* put those in the format string along with the fixed formatting */

while (fscanf(pFile,” %c %lx,%d”, &access_type, &address, &size) > 0) {

/* do stuff */

}

fclose(pFile); /* always close file when done */

Class Question / Discussions

• We’ll work through a series of questions
• For each, take a minute and write down your answer

• Then discuss with your classmates

Questions based on ones provided by Prof Sat Garcia, USD

void who(int *arr, int size) {

for (int i = 0; i < size-1; ++i)

arr[i] = arr[i+1];

}

What Type of Locality?
The following function exhibits which type of locality?
Consider only array accesses.

9

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B

void who(int *arr, int size) {

for (int i = 0; i < size-1; ++i)

arr[i] = arr[i+1];

}

What Type of Locality?
The following function exhibits which type of locality?
Consider only array accesses.

10

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B

void coo(int *arr, int size) {

for (int i = size-2; i >= 0; --i)

arr[i] = arr[i+1];

}

What Type of Locality?
The following function exhibits which type of locality?
Consider only array accesses.

11

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B

void coo(int *arr, int size) {

for (int i = size-2; i >= 0; --i)

arr[i] = arr[i+1];

}

What Type of Locality?
The following function exhibits which type of locality?
Consider only array accesses.

12

A. Spatial

B. Temporal

C. Both A and B

D. Neither A nor B

Calculating Cache Parameters
Given the following address partition, how many int
values will fit in a single data block?

13

18 bits 10 bits 4 bits

031

Tag Set
index

Block offset

Address:

of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We

need more info

Calculating Cache Parameters
Given the following address partition, how many int
values will fit in a single data block?

14

18 bits 10 bits 4 bits

031

Tag Set
index

Block offset

Address:

of int in block

A. 0

B. 1

C. 2

D. 4

E. Unknown: We

need more info

Direct-Mapped Cache Example
Assuming a 32-bit address (i.e. m=32), how many bits are used
for tag (t), set index (s), and block offset (b).

15

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1 lines per setCache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

t s b

A. 1 2 3

B. 27 2 3

C. 25 4 3

D. 1 4 8

E. 20 4 8

t bits s bits b bits

031

Tag Set index Block offset

Direct-Mapped Cache Example
Assuming a 32-bit address (i.e. m=32), how many bits are used
for tag (t), set index (s), and block offset (b).

16

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1 lines per setCache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

t s b

A. 1 2 3

B. 27 2 3

C. 25 4 3

D. 1 4 8

E. 20 4 8

t bits s bits b bits

031

Tag Set index Block offset

Which Set Is it?
Which set may the address 0xFA1C be located in?

17

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1 lines per setCache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 bits 2 bits 3 bits

031

Tag Set index Block offset

Set # for 0xFA1C

A. 0

B. 1

C. 2

D. 3

E. More than one

of the above

Which Set Is it?
Which set may the address 0xFA1C be located in?

18

Valid

Valid

Tag

Tag

Set 0:

Set 1:

E = 1 lines per setCache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 bits 2 bits 3 bits

031

Tag Set index Block offset

Set # for 0xFA1C

A. 0

B. 1

C. 2

D. 3

E. More than one

of the above

Cache Block Range
What range of addresses will be in the same block as address 0xFA1C?

19

Valid

Valid

Tag

Tag

Set 0:

Set 1:

Cache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 bits 2 bits 3 bits

031

Tag Set index Block offset

Addr. Range

A. 0xFA1C

B. 0xFA1C – 0xFA23

C. 0xFA1C – 0xFA1F

D. 0xFA18 – 0xFA1F

E. It depends on

the access size

(byte, word, etc)

Cache Block Range
What range of addresses will be in the same block as address 0xFA1C?

20

Valid

Valid

Tag

Tag

Set 0:

Set 1:

Cache block

Cache block

8 bytes

per data block

Valid

Valid

Tag

Tag

Set 2:

Set 3:

Cache block

Cache block

27 bits 2 bits 3 bits

031

Tag Set index Block offset

Addr. Range

A. 0xFA1C

B. 0xFA1C – 0xFA23

C. 0xFA1C – 0xFA1F

D. 0xFA18 – 0xFA1F

E. It depends on

the access size

(byte, word, etc)

Cache Misses

int foo(int* a, int N)

{

int i, sum = 0;

for(i = 0; i < N; i++)

sum += a[i];

return sum;

}

Accessed Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of A?

Cache Misses

int foo(int* a, int N)

{

int i, sum = 0;

for(i = 0; i < N; i++)

sum += a[i];

return sum;

}

Accessed Bytes

A 4

B 16

C 64

D 256

If N = 16, how many bytes does the loop access of A?

Cache Misses

int foo(int* a, int N)

{

int i, sum = 0;

for(i = 0; i < N; i++)

sum += a[i];

return sum;

}

Misses

A 0

B 8

C 12

D 14

E 16

If there is a 48B cache with 8 bytes per block and two
blocks per set, how many misses if foo is called twice?
N still equals 16

Cache Misses

int foo(int* a, int N)

{

int i, sum = 0;

for(i = 0; i < N; i++)

sum += a[i];

return sum;

}

Misses

A 0

B 8

C 12

D 14

E 16

If there is a 48B cache with 8 bytes per block and two
blocks per set, how many misses if foo is called twice?
N still equals 16

Cache-Friendly Code

• Keep memory accesses bunched together

• in both time and space (address)

• the working set at any time should be smaller than the cache

• Avoid access patterns that cause conflict misses

• memory strides in powers of two that cause all accesses to use

only a few (or just one!) cache set

Blocking Example

• We have a 2D array of 16 elements.
• Cache is fully associative and can hold two lines
• Each line can hold two elements

• Discuss the following questions with your neighbor.

• What is the best miss rate for traversing the array once?
• What order does of traversal did you use?

• What other traversal orders can achieve this miss rate?

Class Discussion

• When comparing between the other traversal orders,
what did they have in common?

If You Get Stuck

Please read the writeup.

Please read the writeup.

Please read the writeup.

Please read the writeup!

CS:APP Chapter 6

View lecture notes and course FAQ at http://www.cs.cmu.edu/~213

Office hours Sunday through Thursday 5:00-9:00pm in WeH 5207

Post a private question on Piazza

man malloc, man gdb, gdb's help command

http://csapp.cs.cmu.edu/public/waside/waside-blocking.pdf

http://www.cs.cmu.edu/~213
http://csapp.cs.cmu.edu/public/waside/waside-blocking.pdf

If I had a penny for every time someone

asked a question answered in the writeup....

Image credit: flickr.com user Elizabeth Thomsen CC-BY-NC-SA 2.0

Appendix: C Programming Style

• Properly document your code

• Header comments, overall operation of large blocks, any tricky bits

• Write robust code – check error and failure conditions

• Write modular code

• Use interfaces for data structures, e.g. create/insert/remove/free
functions for a linked list

• No magic numbers – use #define

• Formatting

• 80 characters per line

• Consistent braces and whitespace

• No memory or file descriptor leaks

