15-213 Recitation 6: C Review

30 Sept 2016

Agenda

- Reminders

- Lessons from Attack Lab
- C Assessment

- Programming Style

- Cache Lab Overview

- Appendix: valgrind

- Appendix: Clang / LLVM

Reminders

JAttack Lab 1s due tomorrow!

0“But 1f you wait until the last
minute, it only takes a minute!” -
NOT!

1Cache Lab will be released
tomorrow!

Image credit: pixabay.com

Lessons from Attack Lab

- Never, ever use gets
- uSe fgets instead if you need that functionality
- Use functions that pass an explicit buffer length if possible
. strncpy/strncat iNStead Of strepy/streat, snprintf instead Of sprintf
- Limit scanf/fscanf input lengths with %123s
- Or use a function that dynamically allocates a large-enough buffer
. asprintf (GNU library) instead of sprintt
- If none of those is possible, be very careful about checking input
size
- Stack protections make it harder to exploit a buffer overflow — but
not impossible

C Assessment

- Can you easily answer all of the problems on the
following slides?

- For each guestion, take a minute to write down your
answer

- If not, please come to the C Bootcamp:
- Wednesday 7:30-9pm, Location TBD

- You need this for the rest of the course. If In
doubt, come to the C Bootcamp!

C Question 1

Which of the following lines has a problem?
If it does, how might you solve it?

int main (int argc, char** argv) {
int *a = malloc (100 * sizeof (int));
for (int 1i=0, i<100; 1i++) {
if (ali1] == 0) ali]=1;
else al[1]=0;

S N

}

free (a);
0 return 0;

C Question 1

What can malloc return? Can malloc fail?

int main (int argc, char** argv) {
int *a = malloc (100 * sizeof(int)) ;
for (int 1i=0, i<100; 1i++) {
if (a[i] == 0) alil=i;
else al[1]=0;

S w N

}

free (a);
0 return 0;

C Question 1

Allocated memory is not initialized.
What function does this?

int main (int argc, char** argv) {
int *a = malloc (100 * sizeof (int));
for (int 1i=0, i<100; 1i++) {
if (a[i] == 0) al[i]l=1i;
else al[1]=0;

S w N

}

free (a);
0 return 0;

C Question 1 (bonus)

Declaring a variable in a for loop requires:
-std=c99 (or later standard)

int main (int argc, char** argv) {
int *a = malloc (100 * sizeof (int));
for (int i=0; i<100; i++) {
if (ali1] == 0) ali]=1;
else al[1]=0;

S w N

}

free (a);
0 return 0;

C Question 1

The code has been revised to address the two
problems.

int main(int argc, char** argv) {
int *a = calloc (100 * sizeof (int));
if (a == NULL) { ...}
for (int 1=0, i1<100; 1i++) {
if (afi] == 0) alil=i;
else al[i]=0;

}

free (a);
return 0O;

C Question 2

* What is the value of A and B? Why?

#define IS GREATER(a, b) a > b

int i1s greater (int a, int b) {
return a > b;

}

int A = IS_GREATER(I, 0) + 1;
int B = is greater(l, 0) + 1

C Question 2

A uses a macro, which does textual substitution

Following the order of operations: 1 >0+1=>1>1=>0

#define IS GREATER(a, b) a > b

int i1s greater (int a, int b) {
return a > b;

}

int A =1 >0+ 1;
int B = is greater (1, 0) + 1;

C Question 2

B uses a function call and behaves as expected:
B=1+1=>2

#define IS GREATER(a,

int is greater (int a,
return a > b;

}

int A =

int B

IS GREATER (1,
1s greater (1,

b) a > b
int b) {
0) + 1;
o) + 1;

C Question 3

Which of the following lines has a problem?
How would you solve the problem(s)?

int *foo(int *allocate) {

1 int a = 3;

2 allocate = malloc(sizeof (int));
3 if (allocate == NULL) abort();
4 return é&a;

C Question 3

allocate is a local copy of the pointer
“*allocate =" assigns to the caller’s location
To allocate for the caller, foo(int **allocate)

int *foo(int *allocate) {

1 int a = 3;

2 allocate = malloc(sizeof (int)) ;
3 if (allocate == NULL) abort();
4 return é&a;

C Question 3

Where is a? To where does &a point?

int *foo(int *allocate) {

1 int a = 3;

2 allocate = malloc(sizeof (int));
3 if (allocate == NULL) abort();
4 return é&a;

C Assessment

7Did you know the answers to all of the problems? If not,

COME TO THE C BOOTCAMP

C Programming Style

- Properly document your code

Header comments, overall operation of large blocks, any tricky bits
- Write robust code — check error and failure conditions
- Write modular code

Use interfaces for data structures, e.g. create/insert/remove/free
functions for a linked list

No magic numbers — use #define
- Formatting
- 80 characters per line

- Consistent braces and whitespace

- No memory or file descriptor leaks

C Programming Exercise

* Learn to use getopt
* Complete the code to process the commandline
* Write a simple calculator program

Form pairs

* One student needs a laptop
* Login to a shark machine

S wget
http://www.cs.cmu.edu/~213/activities/rec6.tar

S tar xf rec6.tar
S cd rec6
S make

http://www.cs.cmu.edu/~213/activities/rec6.tar

man 3 getopt

int getopt(int argc, char * const argv([],
const char *optstring);
* |f there are no more option characters, getopt()
returns -1.

e optstring is a string containing the legitimate
option characters.
* If such a character is followed by a colon, the option
requires an argument
» getopt() places a pointer to the following text in optarg

» getopt() finds an option character in argv that was not
included in optstring, or if it detects a missing option
argument, it returns '?"

If You Get Stuck on cachelab

“Please read the writeup. Please read the writeup. Please read
the writeup. Please read the writeup!

1CS:APP Chapter 6
2View lecture notes and course FAQ at http://www.cs.cmu.edu/~213
1Office hours Sunday through Thursday 5:00-9:00pm in WeH 5207

2Post a private question on Piazza
sman malloc,man valgrind,man gdb, gdb's help command

http://www.cs.cmu.edu/~213

KEEP
CALM

and

READ
THE

WRITEUP

Appendix: valgrind

- A suite of tools for debugging and profiling
memory use, among other things
- find where memory that wasn't freed was allocated
- track origin of uninitialized values
- show heap usage over time
- detect reads and writes of invalid locations
- detect illegal and double frees

valgrind: Finding Memory Leaks

- valgrind --leak-resolution=high --leak-check=full --show-
reachable=yes --track-fds=yes ./my prog <args>

- your program runs as normal, though much, much slower

- read/write errors and uses of uninitialized values are
reported as they occur

- un-freed memory is reported on program termination

Clang / LLVM

* Cachelab — Part B Matrix Transpose

* Clang is a gcc-equivalent C compiler
e Support for code analysis and transformation

* New methods of style checking and trace
generation
e Compiler will check your variable usage and declarations

e Compiler will also instrument the code to record all
memory accesses to a file

