Carnegie Mellon

Recitation 14: Proxy Lab Part 2

Instructor: TA(s)

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 1

Carnegie Mellon

Outline

m Proxylab
m Threading
m Threads and Synchronization

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2

Carnegie Mellon

ProxylLab

m ProxylLabis duein 1 week.
= No grace days

= Make sure to submit well in advance of the deadline in case there
are errors in your submission.

® Build errors are a common source of failure

m A proxy is a server process

" |tis expected to be long-lived
" To not leak resources
" To be robust against user input

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3

Carnegie Mellon

Proxies and Threads

m Network connections can be handled concurrently
= Three approaches were discussed in lecture for doing so
= Your proxy should (eventually) use threads

m Threaded echo server is a good example of how to do this

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4

Carnegie Mellon

Join / Detach

m Does the following code terminate? Why or why not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL);
if (pthread join(tid, NULL) != 0) printf (“Done.\n”) ;

void* work (void* a)

{
pthread detatch(pthread self())

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5

Carnegie Mellon

Join / Detach cont.

m Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL); sleep(l);
if (pthread join(tid, NULL) != 0) printf (“Done.\n”) ;

void* work (void* a)

{
pthread detatch(pthread self())

while (1) ;

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6

When should threads detach?

m In general, pthreads will wait to be reaped via
pthread_join.

m When should this behavior be overridden?

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7

When should threads detach?

m In general, pthreads will wait to be reaped via
pthread_join.

m When should this behavior be overridden?

m When termination status does not matter.
= pthread_join provides a return value

m When result of thread is not needed.

= When other threads do not depend on this thread having
completed

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8

Carnegie Mellon

Threads

m What is the range of value(s) that main will print?

m A programmer proposes removing j from thread and just
directly accessing count. Does the answer change?

volatile int count = 0; int main(int argc, char** argv)
{
void* thread(void* wv) pthread t tid[2];
Lt 4 count for(int i = 0; i < 2; i++)
in = ’ . .
j = ; + 1 pthread create(&tid[i], NULL,
count = j; thread, NULL) ;

} for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“%d\n”, count) ;
return O;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9

Carnegie Mellon

Synchronization

m Is not cheap
= 100s of cycles just to acquire without waiting

m That is also not expensive
= Recall your malloc target of 15000kops => ~100 cycles

m May be necessary

= Correctness is always more important than performance

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10

Carnegie Mellon

Which synchronization should | use?

m Counting a shared resource, such as shared buffers

m Exclusive access to one or more variables

m Most operations are reading, rarely writing / modifying

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11

Carnegie Mellon

Which synchronization should | use?

m Counting a shared resource, such as shared buffers
= Semaphore

m Exclusive access to one or more variables
" Mutex

m Most operations are reading, rarely writing / modifying
= RWLock

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12

Carnegie Mellon

Threads Revisited

m Which lock type should be used?
m Where should it be acquired / released?

volatile int count = 0; int main(int argc, char** argv)
{
void* thread(void* wv) pthread t tid[2];
bt count. for(int i = 0; i < 2; i++)
5 = ; : 1. ' pthread create(&tid[i], NULL,
count = j; thread, NULL) ;

} for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“%d\n”, count) ;
return O;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13

Carnegie Mellon

Associating locks with data

m Given the following key-value store

= Key and value have separate RWLocks: klock and vlock
= When an entry is replaced, both locks are acquired.

m Describe why the printf may not be accurate.

typedef struct _data t {

int key; pthread rwlock rdlock (klock) ;
cize t ;alue° match = search (k) ;
} data t: ’ pthread rwlock unlock (klock) ;
i 1= -
#define SIZE 10 if (match 1= -1)
data t space[SIZE]; {
int ;éarch(int k) pthread rwlock rdlock(vlock) ;
(printf (“$zd\n”, space[match]);
for(int j = 0; j < SIZE; j++) pthread rwlock unlock (vlock) ;
if (space[]j] .key == k) return j; }

return -1;

}

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14

Carnegie Mellon

Locks gone wrong

1. RWLocks are particularly susceptible to which issue:
a. Starvation b. Livelock c. Deadlock

2. If some code acquires rwlocks as readers: LockA then
LockB, while other readers go LockB then LockA. What,
if any, order can a writer acquire both LockA and LockB?

3. Design an approach to acquiring two semaphores that
avoids deadlock and livelock, while allowing progress to
other threads needing only one semaphore.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15

Carnegie Mellon

Locks gone wrong

1. RWLocks are particularly susceptible to which issue:

b. Livelock c. Deadlock

2. If some code acquires rwlocks as readers: LockA then
LockB, while other readers go LockB then LockA. What,
if any, order can a writer acquire both LockA and LockB?

No order is possible without a potential deadlock.

3. Design an approach to acquiring two semaphores that
avoids deadlock and livelock, while allowing progress to
other threads needing only one semaphore.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16

Carnegie Mellon

Proxylab Reminders

m Read the writeup

m Submit your code (days) early
" Test that the submission will build and run on Autolab

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17

Appendix

m Calling exit() will terminate all threads

m Calling pthread_join on a detached thread is technically
undefined behavior. Was defined as returning an error.

Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18

