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Outline

m Proxylab
m Threading
m Threads and Synchronization
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ProxylLab

m ProxylLabis duein 1 week.
= No grace days

= Make sure to submit well in advance of the deadline in case there
are errors in your submission.

® Build errors are a common source of failure

m A proxy is a server process

" |tis expected to be long-lived
" To not leak resources
" To be robust against user input
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Proxies and Threads

m Network connections can be handled concurrently
= Three approaches were discussed in lecture for doing so
= Your proxy should (eventually) use threads

m Threaded echo server is a good example of how to do this
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Join / Detach

m Does the following code terminate? Why or why not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL);
if (pthread join(tid, NULL) != 0) printf (“Done.\n”) ;

void* work (void* a)

{
pthread detatch(pthread self())

while (1) ;
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Join / Detach cont.

m Does the following code terminate now? Why or why
not?

int main(int argc, char** argv)

{

pthread create(&tid, NULL, work, NULL); sleep(l);
if (pthread join(tid, NULL) != 0) printf (“Done.\n”) ;

void* work (void* a)

{
pthread detatch(pthread self())

while (1) ;
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When should threads detach?

m In general, pthreads will wait to be reaped via
pthread_join.

m When should this behavior be overridden?
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When should threads detach?

m In general, pthreads will wait to be reaped via
pthread_join.

m When should this behavior be overridden?

m When termination status does not matter.
= pthread_join provides a return value

m When result of thread is not needed.

= When other threads do not depend on this thread having
completed
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Threads

m What is the range of value(s) that main will print?

m A programmer proposes removing j from thread and just
directly accessing count. Does the answer change?

volatile int count = 0; int main(int argc, char** argv)
{
void* thread(void* wv) pthread t tid[2];
Lt 4 count for(int i = 0; i < 2; i++)
in = ’ . .
j = ; + 1 pthread create(&tid[i], NULL,
count = j; thread, NULL) ;

} for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“%d\n”, count) ;
return O;

}
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Synchronization

m Is not cheap
= 100s of cycles just to acquire without waiting

m That is also not expensive
= Recall your malloc target of 15000kops => ~100 cycles

m May be necessary

= Correctness is always more important than performance
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Which synchronization should | use?

m Counting a shared resource, such as shared buffers

m Exclusive access to one or more variables

m Most operations are reading, rarely writing / modifying
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Which synchronization should | use?

m Counting a shared resource, such as shared buffers
= Semaphore

m Exclusive access to one or more variables
" Mutex

m Most operations are reading, rarely writing / modifying
= RWLock
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Threads Revisited

m Which lock type should be used?
m Where should it be acquired / released?

volatile int count = 0; int main(int argc, char** argv)
{
void* thread(void* wv) pthread t tid[2];
bt count. for(int i = 0; i < 2; i++)
5 = ; : 1. ' pthread create(&tid[i], NULL,
count = j; thread, NULL) ;

} for (int 1 = 0; 1 < 2; i++)
pthread join(tid[i]);
printf (“%d\n”, count) ;
return O;

}
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Associating locks with data

m Given the following key-value store

= Key and value have separate RWLocks: klock and vlock
= When an entry is replaced, both locks are acquired.

m Describe why the printf may not be accurate.

typedef struct _data t {

int key; pthread rwlock rdlock (klock) ;
cize t ;alue° match = search (k) ;
} data t: ’ pthread rwlock unlock (klock) ;
i 1= -
#define SIZE 10 if (match 1= -1)
data t space[SIZE]; {
int ;éarch(int k) pthread rwlock rdlock(vlock) ;
( printf (“$zd\n”, space[match]);
for(int j = 0; j < SIZE; j++) pthread rwlock unlock (vlock) ;
if (space[]j] .key == k) return j; }

return -1;

}
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Locks gone wrong

1.  RWLocks are particularly susceptible to which issue:
a. Starvation b. Livelock c. Deadlock

2. If some code acquires rwlocks as readers: LockA then
LockB, while other readers go LockB then LockA. What,
if any, order can a writer acquire both LockA and LockB?

3. Design an approach to acquiring two semaphores that
avoids deadlock and livelock, while allowing progress to
other threads needing only one semaphore.
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Locks gone wrong

1.  RWLocks are particularly susceptible to which issue:

b. Livelock c. Deadlock

2. If some code acquires rwlocks as readers: LockA then
LockB, while other readers go LockB then LockA. What,
if any, order can a writer acquire both LockA and LockB?

No order is possible without a potential deadlock.

3. Design an approach to acquiring two semaphores that
avoids deadlock and livelock, while allowing progress to
other threads needing only one semaphore.
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Proxylab Reminders

m Read the writeup

m Submit your code (days) early
" Test that the submission will build and run on Autolab
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Appendix

m Calling exit() will terminate all threads

m Calling pthread_join on a detached thread is technically
undefined behavior. Was defined as returning an error.
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