
Carnegie Mellon

15-213: Final Exam Review

Jack, Nikhil, Raghav, Stan

Carnegie Mellon

Malloc final-f10 #1.17

■ In malloclab, we provided code for an implicit list
allocator (the naive implementation). Many students
improved this code by creating an explicit linked list of
free blocks. Which of the following reason(s)
explain(s) why an explicit linked list implementation
has better performance?

http://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Malloc final-f10 #1.17

■ (b) II only
■ I. Immediate coalescing on free is faster

■ No; coalescing doesn’t depend on the list
■ II. Implicit has all blocks vs just free blocks in explicit

■ Yes - significantly reduces search time, since
there are fewer blocks to look at

■ III. Insert into explicit list is faster
■ No; implicit list doesn’t have insertion operation at

all, since all blocks are already in the implicit list!

http://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Malloc - other things to know

■ Fit algorithms - first/next/best/good fit
■ Fragmentation

■ Internal - wasted space inside blocks
■ External - wasted space between blocks

■ See the textbook for details

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (a) How many symbols does main.c generate in the
executable program’s symbol table?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (a) How many symbols does main.c generate in the
executable program’s symbol table?
■ 5 symbols:

■ long a = 1;
■ const long b = 2;
■ long c;
■ long d = -1;
■ int main(int argc, char *arg[])

{...}

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (b) What are the strong symbols from main.c, and
what are the weak symbols from main.c?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (b) What are the strong symbols from main.c, and
what are the weak symbols from main.c?
■ long a = 1; strong
■ const long b = 2; strong
■ long c; weak

■ Does not have a defined value!
■ long d = -1; strong
■ int main(int argc, char *arg[]) {...}

strong

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (c) Note the address of b. Why is it far removed from
the addresses of the other variables?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (c) Note the address of b. Why is it far removed from
the addresses of the other variables?
■ Declared as const long b = ...;
■ Thus, it’s read-only

■ Placed in the .rodata section of binary
■ The other variables are NOT read-only

■ Placed in the .data section of the binary

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (d) Why is c located after d in memory, even though
it’s before d in Harry’s program?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (d) Why is c located after d in memory, even though
it’s before d in Harry’s program?
■ c is defined in data.c after main.c is compiled

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (e) Note the output given by the final printf. Was
Harry compiling and running the code on x86 or
x86-64? How do you know?
■ You don’t need to know the answer to this :)
■ If you still want to know, look up the address of

the start of the .data section in x86 vs. x86-64

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (f) Given that 4294967297 = 232 + 1, what would be
output by
■ printf(“{%d, %d}”, c[0], c[1]);

■ if it were executed in data.c?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

■ (f) Given that 4294967297 = 232 + 1, what would be
output by
■ printf(“{%d, %d}”, c[0], c[1]);

■ if it were executed in data.c?
■ “{1, 1}” - the line that prints c as a (64-bit)

long in main prints 4294967297 = 232 + 1 =
0x100000001

■ If we access c as an array of 2 (32-bit) unsigned
ints, we just get the top and bottom 32 bits

■ Note: c[0] holds the bottom 32 bits due to
little-endianness

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?

■ Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible? How?

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?

■ Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible? How?

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?
void readlock(struct rwlock *lock) {

while(1) {

sem_wait(lock->sem);

if(lock->writers == 0) {

lock->readers++;

break;

} sem_post(lock->sem);

}

}

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?
void readlock(struct rwlock *lock) {

while(1) {

sem_wait(lock->sem);

if(lock->writers == 0) {

lock->readers++;

break; // same goes for writelock!
} sem_post(lock->sem);

}

}

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?
■ When either a read or write lock is acquired, the

function returns without calling sem_post
unlock:
sem_wait(sem)
if lock->readers > 0
- lock->readers--
else
- lock->writers--
sem_post(sem)

readlock:
while true:
- sem_wait(sem)
- if writers == 0

- readers++; break;
- sem_post(sem)

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?
■ When either a read or write lock is acquired, the

function returns without calling sem_post
unlock:
sem_wait(sem)
if lock->readers > 0
- lock->readers--
else
- lock->writers--
sem_post(sem)

readlock:
while true:
- sem_wait(sem)
- if writers == 0

- readers++; break;
- sem_post(sem)

(1)

(2)

(3) … :(

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

■ Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible? How?

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

■ Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible? How?
■ Yes. Writers can be starved as long as one

reader remains in the critical section at all times.

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

■ Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible? How?

readlock:
while true:
- sem_wait(sem)
- if writers == 0

- readers++; break;
- sem_post(sem)

sem_post(sem)

writelock:
while true:
- sem_wait(sem)
- if writers == 0 and readers == 0

- writers = 1; break;
- sem_post(sem)

sem_post(sem)

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Signals final-f10 #10

■ A form of inter-process communication
■ Sending and receiving a signal:

a. “Sending” process tells kernel to send signal to
target process

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

■ A form of inter-process communication
■ Sending and receiving a signal:

a. “Sending” process tells kernel to send signal to
target process

b. Kernel updates the pending signals mask to show
that a signal has arrived

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

■ A form of inter-process communication
■ Sending and receiving a signal:

a. “Sending” process tells kernel to send signal to
target process

b. Kernel updates the pending signals mask to show
that a signal has arrived

c. Target process handles delivered (i.e. not
blocked) signal when it jumps from kernel mode to
user mode (getting context switched to, returning
from syscall, etc.)

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed

“A” is printed

“B is printed

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed

“B is printed

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed Yes

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed Yes

“Ba” is printed Yes

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed Yes

“Ba” is printed Yes

A process does not terminate No

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed

“ba” is printed

“abc is printed

“bac” is printed

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed

“abc is printed

“bac” is printed

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed

“bac” is printed

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed Yes

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed Yes

“bca” is printed Yes

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed Yes

“bca” is printed Yes

A process does not terminate Yes

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Virtual Memory
Virtual Address - 18 Bits

Physical Address - 12 Bits

Page Size - 512 Bytes

TLB is 8-way set associative

Cache is 2-way set associative

Final S-02 (#5)
Lecture 18: VM - Systems

http://www.cs.cmu.edu/~213/oldexams/final-s02.pdf
http://www.cs.cmu.edu/~213/oldexams/final-s02.pdf
http://www.cs.cmu.edu/~213/lectures/18-vm-systems.pdf
http://www.cs.cmu.edu/~213/lectures/18-vm-systems.pdf

Carnegie Mellon

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index
(D) TLBT: TLB Tag

Carnegie Mellon

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset - Location in the page

Page Size = 512 Bytes = 29 → Need 9 bits

Carnegie Mellon

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number - Everything Else

Carnegie Mellon

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache

Carnegie Mellon

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache

2 Indices → 1 Bit

TLBI

Carnegie Mellon

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index
(D) TLBT: TLB Tag - Everything Else

TLBITLBT

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset
(B) PPN: Physical Page Number
(C) CO: Cache Offset
(D) CI: Cache Index
(E) CT: Cache Tag

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO

AAAAAAAAA

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else

AAAAAAAAABBB

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

AAAAAAAAABBB

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

4 Byte Blocks → 2 Bits

AAAAAAAAABBB

CO

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index

AAAAAAAAABBB

CO

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index

4 Indices → 2 Bits

AAAAAAAAABBB

COCI

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index
(E) CT: Cache Tag - Everything Else

AAAAAAAAAB

Cache Tag

BB

COCI

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
1 = 0001 A = 1010 9 = 1001 F = 1111 4 = 0100

001011111001010110

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0x?? TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: Y/N? PPN: 0x??

001011111001010110

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: N! PPN: 0x??

001011111001010110

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: N! PPN: 0x3

001011111001010110

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Put it all together: PPN: 0x3, PPO = 0x??

110

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Put it all together: PPN: 0x3, PPO = VPO = 0x1F4

001011111110

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?

CO: 0x?? CI: 0x?? CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x?? CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x01 CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y/N? Value:0x??

001011111110

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y Value:0x??

001011111110

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y Value:0xFF

001011111110

Carnegie Mellon

Good luck!

