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Malloc final-f10 #1.17

■ In malloclab, we provided code for an implicit list 
allocator (the naive implementation). Many students 
improved this code by creating an explicit linked list of 
free blocks. Which of the following reason(s) 
explain(s) why an explicit linked list implementation 
has better performance?

http://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Malloc final-f10 #1.17

■ (b) II only
■ I. Immediate coalescing on free is faster

■ No; coalescing doesn’t depend on the list
■ II. Implicit has all blocks vs just free blocks in explicit

■ Yes - significantly reduces search time, since 
there are fewer blocks to look at

■ III. Insert into explicit list is faster
■ No; implicit list doesn’t have insertion operation at 

all, since all blocks are already in the implicit list!

http://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Malloc - other things to know

■ Fit algorithms - first/next/best/good fit
■ Fragmentation

■ Internal - wasted space inside blocks
■ External - wasted space between blocks

■ See the textbook for details
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Linking exam2-s09-v1 #4

■ (a) How many symbols does main.c generate in the 
executable program’s symbol table?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (a) How many symbols does main.c generate in the 
executable program’s symbol table?
■ 5 symbols:

■ long a = 1;
■ const long b = 2;
■ long c;
■ long d = -1;
■ int main(int argc, char *arg[]) 

{...}

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (b) What are the strong symbols from main.c, and 
what are the weak symbols from main.c?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (b) What are the strong symbols from main.c, and 
what are the weak symbols from main.c?
■ long a = 1; strong
■ const long b = 2; strong
■ long c; weak

■ Does not have a defined value!
■ long d = -1; strong
■ int main(int argc, char *arg[]) {...} 

strong

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (c) Note the address of b. Why is it far removed from 
the addresses of the other variables?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (c) Note the address of b. Why is it far removed from 
the addresses of the other variables?
■ Declared as const long b = ...;
■ Thus, it’s read-only

■ Placed in the .rodata section of binary
■ The other variables are NOT read-only

■ Placed in the .data section of the binary

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (d) Why is c located after d in memory, even though 
it’s before d in Harry’s program?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (d) Why is c located after d in memory, even though 
it’s before d in Harry’s program?
■ c is defined in data.c after main.c is compiled

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (e) Note the output given by the final printf. Was 
Harry compiling and running the code on x86 or 
x86-64? How do you know?
■ You don’t need to know the answer to this :)
■ If you still want to know, look up the address of 

the start of the .data section in x86 vs. x86-64

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (f) Given that 4294967297 = 232 + 1, what would be 
output by
■ printf(“{%d, %d}”, c[0], c[1]);

■ if it were executed in data.c?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Linking exam2-s09-v1 #4

■ (f) Given that 4294967297 = 232 + 1, what would be 
output by
■ printf(“{%d, %d}”, c[0], c[1]);

■ if it were executed in data.c?
■ “{1, 1}” - the line that prints c as a (64-bit) 

long in main prints 4294967297 = 232 + 1 = 
0x100000001

■ If we access c as an array of 2 (32-bit) unsigned 
ints, we just get the top and bottom 32 bits

■ Note: c[0] holds the bottom 32 bits due to 
little-endianness

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf
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Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?

■ Starvation is a problem where one thread, or kind of 
thread (think reader or writer), is unable to acquire a 
resource. After fixing the previous problem, is 
starvation possible? How?

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf
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Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?

■ Starvation is a problem where one thread, or kind of 
thread (think reader or writer), is unable to acquire a 
resource. After fixing the previous problem, is 
starvation possible? How?

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf


Carnegie Mellon

 

Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?
void readlock(struct rwlock *lock) { 

while(1) {

sem_wait(lock->sem);

if(lock->writers == 0) {

lock->readers++;

break;

} sem_post(lock->sem);

} 

}

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf
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Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?
void readlock(struct rwlock *lock) { 

while(1) {

sem_wait(lock->sem);

if(lock->writers == 0) {

lock->readers++;

break; // same goes for writelock!
} sem_post(lock->sem);

} 

}

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf
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Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?
■ When either a read or write lock is acquired, the 

function returns without calling sem_post
unlock:
sem_wait(sem)
if lock->readers > 0
- lock->readers--
else
- lock->writers--
sem_post(sem)

readlock:
while true:
- sem_wait(sem)
- if writers == 0

- readers++; break;
- sem_post(sem)

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf
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Threads and Synchronization final-s11 #5

■ What is the problem with the implementation?
■ When either a read or write lock is acquired, the 

function returns without calling sem_post
unlock:
sem_wait(sem)
if lock->readers > 0
- lock->readers--
else
- lock->writers--
sem_post(sem)

readlock:
while true:
- sem_wait(sem)
- if writers == 0

- readers++; break;
- sem_post(sem)

(1)

(2)

(3) … :(

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf
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Threads and Synchronization final-s11 #5

■ Starvation is a problem where one thread, or kind of 
thread (think reader or writer), is unable to acquire a 
resource. After fixing the previous problem, is 
starvation possible? How?

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf
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Threads and Synchronization final-s11 #5

■ Starvation is a problem where one thread, or kind of 
thread (think reader or writer), is unable to acquire a 
resource. After fixing the previous problem, is 
starvation possible? How?
■ Yes.  Writers can be starved as long as one 

reader remains in the critical section at all times.

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf
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Threads and Synchronization final-s11 #5

■ Starvation is a problem where one thread, or kind of 
thread (think reader or writer), is unable to acquire a 
resource. After fixing the previous problem, is 
starvation possible? How?

readlock:
while true:
- sem_wait(sem)
- if writers == 0

- readers++; break;
- sem_post(sem)

sem_post(sem)

writelock:
while true:
- sem_wait(sem)
- if writers == 0 and readers == 0

- writers = 1; break;
- sem_post(sem)

sem_post(sem)

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf
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Signals final-f10 #10

■ A form of inter-process communication
■ Sending and receiving a signal:

a. “Sending” process tells kernel to send signal to 
target process

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

■ A form of inter-process communication
■ Sending and receiving a signal:

a. “Sending” process tells kernel to send signal to 
target process

b. Kernel updates the pending signals mask to show 
that a signal has arrived

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

■ A form of inter-process communication
■ Sending and receiving a signal:

a. “Sending” process tells kernel to send signal to 
target process

b. Kernel updates the pending signals mask to show 
that a signal has arrived

c. Target process handles delivered (i.e. not 
blocked) signal when it jumps from kernel mode to 
user mode (getting context switched to, returning 
from syscall, etc.)

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed

“A” is printed

“B is printed

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed

“B is printed

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed

“Ab” is printed

“Ba” is printed

A process does not terminate
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed Yes

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed Yes

“Ba” is printed Yes

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?

Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed Yes

“Ba” is printed Yes

A process does not terminate No

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed

“ba” is printed

“abc is printed

“bac” is printed

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed

“abc is printed

“bac” is printed

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed

“bac” is printed

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed Yes

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed Yes

“bca” is printed Yes

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?

Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed Yes

“bca” is printed Yes

A process does not terminate Yes

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf
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Virtual Memory
Virtual Address - 18 Bits

Physical Address - 12 Bits

Page Size - 512 Bytes

TLB is 8-way set associative

Cache is 2-way set associative

Final S-02 (#5)
Lecture 18: VM - Systems

http://www.cs.cmu.edu/~213/oldexams/final-s02.pdf
http://www.cs.cmu.edu/~213/oldexams/final-s02.pdf
http://www.cs.cmu.edu/~213/lectures/18-vm-systems.pdf
http://www.cs.cmu.edu/~213/lectures/18-vm-systems.pdf
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index
(D) TLBT: TLB Tag
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset - Location in the page

Page Size = 512 Bytes = 29 → Need 9 bits
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number - Everything Else
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache



Carnegie Mellon

 

Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache

2 Indices → 1 Bit

TLBI
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Virtual Memory

Label the following:
(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index
(D) TLBT: TLB Tag - Everything Else

TLBITLBT
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset
(B) PPN: Physical Page Number
(C) CO: Cache Offset
(D) CI: Cache Index
(E) CT: Cache Tag
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO

AAAAAAAAA
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else

AAAAAAAAABBB
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

AAAAAAAAABBB
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

4 Byte Blocks → 2 Bits

AAAAAAAAABBB

CO
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index

AAAAAAAAABBB

CO
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index

4 Indices → 2 Bits

AAAAAAAAABBB

COCI
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Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(D) CI: Cache Index
(E) CT: Cache Tag - Everything Else

AAAAAAAAAB

Cache Tag

BB

COCI
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
1 = 0001 A = 1010 9 = 1001 F = 1111 4 = 0100

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0x?? TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: Y/N? PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: N! PPN: 0x??

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x6A
TLB Hit: Y! Page Fault: N! PPN: 0x3

001011111001010110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Put it all together: PPN: 0x3, PPO = 0x??

110
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Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Put it all together: PPN: 0x3, PPO = VPO = 0x1F4

001011111110
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Virtual Memory

Q) What is the value of the address?

CO: 0x?? CI: 0x?? CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110
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Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x?? CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110



Carnegie Mellon

 

Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x01 CT: 0x?? Cache Hit: Y/N? Value:0x??

001011111110
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Virtual Memory

Q) What is the value of the address?
1. Extract more information

CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y/N? Value:0x??

001011111110
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Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y Value:0x??

001011111110
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Virtual Memory

Q) What is the value of the address?
1. Extract more information
2. Go to Cache Table
CO: 0x00 CI: 0x01 CT: 0x7F Cache Hit: Y Value:0xFF

001011111110
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Good luck!


