Carnegie Mellon

15-213: Final Exam Review

Jack, Nikhil, Raghav, Stan

Malloc final-f10 #1.17

m In malloclab, we provided code for an implicit list
allocator (the naive implementation). Many students
improved this code by creating an explicit linked list of
free blocks. Which of the following reason(s)
explain(s) why an explicit linked list implementation
has better performance?

http://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Malloc final-f10 #1.17

m (b) Il only
m |. Immediate coalescing on free is faster
m No; coalescing doesn’t depend on the list
m |l. Implicit has all blocks vs just free blocks in explicit
m Yes - significantly reduces search time, since
there are fewer blocks to look at
m |ll. Insert into explicit list is faster
m No; implicit list doesn’t have insertion operation at
all, since all blocks are already in the implicit list!

http://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Malloc - other things to know

m Fit algorithms - first/next/best/good fit
m Fragmentation

m Internal - wasted space inside blocks

m External - wasted space between blocks
m See the textbook for details

Carnegie Mellon

Linking exam2-s09-v1 #4

m (a) How many symbols does main. c generate in the
executable program’s symbol table?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (a) How many symbols does main. c generate in the
executable program’s symbol table?
m 5 symbols:
m long a = 1;

m const long b = 2;
m long c;

m long d = -1;

|

int main(int argc, char xarg[])

{...}

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (b) What are the strong symbols from main.c, and
what are the weak symbols from main.c?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (b) What are the strong symbols from main.c, and

what are the weak symbols from main.c?

m long a = 1; strong

m const long b = 2; strong

m long c; weak
m Does not have a defined value!

m long d = -1; strong

m int main(int argc, char *arg[]) {...}
strong

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (c) Note the address of b. Why is it far removed from
the addresses of the other variables?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (c) Note the address of b. Why is it far removed from
the addresses of the other variables?
m Declaredas const long b = ...;
m Thus, it's read-only
m Placed in the . rodata section of binary
m The other variables are NOT read-only
m Placed in the .data section of the binary

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (d) Why is c located after d in memory, even though
it's before d in Harry’s program?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (d) Why is c located after d in memory, even though
it's before d in Harry’s program?
m cis definedin data.c after main.c is compiled

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (e) Note the output given by the final printf. Was
Harry compiling and running the code on x86 or
x86-647 How do you know?

m You don’t need to know the answer to this :)
m If you still want to know, look up the address of
the start of the .data section in x86 vs. x86-64

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (f) Given that 4294967297 = 232 + 1, what would be
output by
m printf(“{%d, %d}”, c[0], c[1]);

m if it were executed in data.c?

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Linking exam2-s09-v1 #4

m (f) Given that 4294967297 = 232 + 1, what would be
output by

m printf(“{%d, %d}”, c[0], c[1]);

m if it were executed in data.c?

m “{1, 1}” - theline that prints c as a (64-bit)
long in main prints 4294967297 = 232 + 1 =
0x100000001

m If we access c as an array of 2 (32-bit) unsigned
ints, we just get the top and bottom 32 bits

m Note: c[0] holds the bottom 32 bits due to
little-endianness

http://www.cs.cmu.edu/~213/oldexams/exam2-s09-v1.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

m What is the problem with the implementation?

m Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible”? How?

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

m What is the problem with the implementation?

m Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible”? How?

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

m What is the problem with the implementation?
vold readlock (struct rwlock *lock) {
while (1) {
sem walt (lock->sem) ;
if (lock->writers == 0) {
lock->readers++;
break;

} sem post (lock->sem);

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

m What is the problem with the implementation?
vold readlock (struct rwlock *lock) {
while (1) {
sem walt (lock->sem) ;
if (lock->writers == 0) {
lock->readers++;
break; // same goes for writelock!

} sem post (lock->sem);

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

m What is the problem with the implementation?
m When either a read or write lock is acquired, the
function returns without calling sem post

readlock: unlock:
while true: sem walt (sem)
- sem walt (sem) if lock—->readers > 0

— 1f writers ==
— readers++; break;
- sem post (sem)

- lock—->readers—-
else
— Jlock->writers—-

sem post (sem)

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

m What is the problem with the implementation?
m When either a read or write lock is acquired, the
function returns without calling sem post

readlock: unlock:

while true: (1) sem wait (sem) (3) ... (
- sem walt (sem) if lock->readers > 0
- 1f writers == - lock->readers--
(2) - readers++; break;

else
- sem post (sem)

— Jlock->writers—-

sem post (sem)

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Threads and Synchronization final-s11 #5

m Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible? How?

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Threads and Synchronization final-s11 #5

m Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible? How?

m Yes. Writers can be starved as long as one
reader remains in the critical section at all times.

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Threads and Synchronization final-s11 #5

m Starvation is a problem where one thread, or kind of
thread (think reader or writer), is unable to acquire a
resource. After fixing the previous problem, is
starvation possible? How?

readlock: writelock:

while true: while true:

- sem walt (sem) - sem walt (sem)

- 1f writers == 0 - 1f writers == 0 and readers == 0
- readers++; break; - writers = 1; break;

- sem post (sem) - sem post (sem)

sem post (sem) sem post (sem)

https://www.cs.cmu.edu/~213/oldexams/final-s11.pdf

Carnegie Mellon

Signals final-f10 #10

m A form of inter-process communication
m Sending and receiving a signal:
a. “Sending” process tells kernel to send signal to
target process

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Signals final-f10 #10

m A form of inter-process communication
m Sending and receiving a signal:
a. “Sending” process tells kernel to send signal to
target process
b. Kernel updates the pending signals mask to show
that a signal has arrived

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

m A form of inter-process communication
m Sending and receiving a signal:
a. “Sending” process tells kernel to send signal to
target process
b. Kernel updates the pending signals mask to show
that a signal has arrived
c. Target process handles delivered (i.e. not
blocked) signal when it jumps from kernel mode to
user mode (getting context switched to, returning
from syscall, etc.)

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?
Nothing is printed

“A” is printed

“B is printed

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?
Nothing is printed Yes

“A” is printed

“B is printed

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?
Nothing is printed Yes

“A” is printed Yes

“B is printed

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?
Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?
Nothing is printed Yes

“A” is printed Yes

“B is printed Yes

“Ab” is printed Yes

“Ba” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?
Nothing is printed Yes
“A” is printed Yes
“B is printed Yes
“Ab” is printed Yes
“Ba” is printed Yes

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Signals final-f10 #10

Strategy: Process graphs!

Snippet 1 outcome Possible?
Nothing is printed Yes
“A” is printed Yes
“B is printed Yes
“Ab” is printed Yes
“Ba” is printed Yes

A process does not terminate No

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?
Nothing is printed

“ba” is printed

“abc is printed

“bac” is printed

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?
Nothing is printed No
“ba” is printed

“abc is printed
“bac” is printed
“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?
Nothing is printed No
“ba” is printed No

“abc is printed
“bac” is printed
“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?
Nothing is printed No
“ba” is printed No
“abc is printed No

“bac” is printed
“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?
Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed Yes

“bca” is printed

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?
Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed Yes
“bca” is printed Yes

A process does not terminate

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Signals final-f10 #10

Strategy: Process graphs!

Snippet 2 outcome Possible?
Nothing is printed No

“ba” is printed No

“abc is printed No

“bac” is printed Yes
“bca” is printed Yes

A process does not terminate Yes

https://www.cs.cmu.edu/~213/oldexams/final-f10.pdf

Carnegie Mellon

Virtual Memory

Virtual Address - 18 Bits
Physical Address - 12 Bits
Page Size - 512 Bytes

TLB is 8-way set associative
Cache is 2-way set associative

Final S-02 (#5)
Lecture 18: VM - Systems

Page Table TLB

VPN PPN Valid| VPN PPN Valid| |Index | Tag PPN Vald
o007 o [010 1 0 0 55 6 0
01 5 o (011 3 0 48 F I
002 1 1 |01z 3 0 00 A 0
003 5 o [013 0O 0 32 9 I
004 0 0 014 6 1 6A 3 I
005 5 0 [015 5 0 56 I 0
oo 2 o [ol6e 7 0 60 4 I
007 4 L ||edF 3 1 78 9 0
008 7 0 018 O 0 I 71 5 I
o0 2 o (019 2 0 3l A I
00A 3 0 [01A 1 0 53 F 0
00B 0 0 [0IB 3 0 87 8 0
00C 0 0 [01C 2 0 51 D 0
00D 3 0 (oD 7 0 39 E 1
00E 4 0 [0IE 5 1 43 B 0
00F 7 1 |0IF 0 0 73 2 i

2-way Set Associative Cache

Index|| Tag WValid|Byte O Byte | Byte 2 Byie 3|] Tag Valid|Byte 0 Byte | Byte 2 Byte 3
0 TA 1 09 EE 12 64 00 0 o9 04 03 48
| 02 0 &0 17 18 19 TF | FF BC 0B 37
2 55 I 30 EB 2 oD oB 0 8F E2 03 BD
3 o7 I 03 04 03 06 sD | TA 08 03 22

http://www.cs.cmu.edu/~213/oldexams/final-s02.pdf
http://www.cs.cmu.edu/~213/oldexams/final-s02.pdf
http://www.cs.cmu.edu/~213/lectures/18-vm-systems.pdf
http://www.cs.cmu.edu/~213/lectures/18-vm-systems.pdf

Virtual Memory

Label the following:

(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index

(D) TLBT: TLB Tag

17 16 1% 4 13 12 11 1 2 ® T &6 5 4 3 2 1 0

. CarnesieMellon
Virtual Memory
Label the following:

(A) VPO: Virtual Page Offset - Location in the page
Page Size = 512 Bytes = 2° — Need 9 bits

7 0 1> W 13 12 N W 2 % T o 9 & 3 0

o

Virtual Memory

Label the following:

(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number - Everything Else

17 16 15 14 13 12 11 10 9 8 7 6 4 3 2
BlB]lB|B|B|(B|B|B|BJ]JA|A|JA|A]JA]JA]JA]JA]|A

Carnegie Mellon

Virtual Memory

Label the following:

(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache

17 16 15 14 13 12 11 10 9 8 7 6
B|l|B|B|B|B|[B|B|B|BJA|A|JA]|A

| &~
| w
> o
>
>

Carnegie Mellon

Virtual Memory

Label the following:

(A) VPO: Virtual Page Offset
(B) VPN: Virtual Page Number
(C) TLBI: TLB Index - Location in the TLB Cache

2 Indices — 1 Bit

17 16 15 14 13 12 11 10 9 8

7 & 35 % 3
BlB|B|B|B|B|B|B|B|J]A|JA]JA|A]JA]A

| 9
>
>

Carnegie Mellon

Virtual Memory

Label the following:

(A) VPO: Virtual Page Offset

(B) VPN: Virtual Page Number

(C) TLBI: TLB Index

(D) TLBT: TLB Tag - Everything Else

17 16 15 14 13 12 11 10 9 8 7 6 4 3 2
BlB]lB|B|B|(B|B|B|BJ]JA|A|JA|A]JA]JA]JA]JA]|A

TLBT TLBI

Virtual Memory

Label the following:

(A) PPO: Physical Page Offset
(B) PPN: Physical Page Number
(C) CO: Cache Offset

(D) CI: Cache Index

(E) CT: Cache Tag

i1 1y 5 8 T 6 5 4 3 2 l 0

T T T T T T T T T [T

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset

i1 1y 5 8 T 6 5 4 3 2 l 0

Carnegie Mellon

Virtual Memory

Label the following:
(A) PPO: Physical Page Offset - Same as VPO

11 10 9

LA

Virtual Memory

Label the following:

(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else

Carnegie Mellon

Virtual Memory

Label the following:

(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

Carnegie Mellon

Virtual Memory

Label the following:

(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

4 Byte Blocks — 2 Bits

Virtual Memory

Label the following:

(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

(D) CI: Cache Index

Virtual Memory

Label the following:

(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block

(D) CI: Cache Index

4 |Indices — 2 Bits

Cl CO

Virtual Memory

Label the following:

(A) PPO: Physical Page Offset - Same as VPO
(B) PPN: Physical Page Number - Everything Else
(C) CO: Cache Offset - Offset in Block
(
(

D) CI: Cache Index
E) CT: Cache Tag - Everything Else

L
o
lad
[
=

11 1 % 8 7T 6

Cache Tag Cl CO

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

17 16 15 14 13 12 i1 1 % 8B 7 & 5 4 31 2 1 O

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
1 =0001 A =1010 9 =1001 F=1111 4 =0100

17 16 15 14 13 12 i1 1 % 8B 7 & 5 4 31 2 1 O

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0x?? TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

17 16 15 14 13 12 i1 1 % 8B 7 & 5 4 31 2 1 O

0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x?? TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

17 16 15 14 13 12 i1 1 % 8B 7 & 5 4 31 2 1 O

0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: 0x??
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

17 16 15 14 13 12 i1 1 % 8B 7 & 5 4 31 2 1 O

0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: Ox6A
TLB Hit: Y/N? Page Fault: Y/N? PPN: 0x??

17 16 15 14 13 12 i1 1 % 8B 7 & 5 4 31 2 1 O

0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: Ox6A
TLB Hit: Y! Page Fault: Y/N? PPN: 0x??

17 16 15 14 13 12 i1 1 % 8B 7 & 5 4 31 2 1 O

0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: Ox6A
TLB Hit: Y! Page Fault: NI PPN: 0x??

17 16 15 14 13 12 i1 1 % 8B 7 & 5 4 31 2 1 O

0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information:

VPN: 0xD4 TLBI: 0x00 TLBT: Ox6A
TLB Hit: Y! Page Fault: N!' PPN: 0x3

17 16 15 14 13 12 i1 10 9 8 T & 5 4 13

b~
=

0 1 1 0 1 0 1 0 0 1 1 1 1 1 0 1 0 0

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Putit all together: PPN: 0x3, PPO = 0x7??

i1 1y 5 8 T 6 5 4 3 2 l 0

Carnegie Mellon

Virtual Memory

Now to the actual question!
Q) Translate the following address: 0x1A9F4

1. Write down bit representation
2. Extract Information
3. Putit all together: PPN: 0x3, PPO = VPO = 0x1F4

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?

CO: 0x?? CI: Ox?? CT: 0x?? Cache Hit: Y/N? Value:0x??

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?

1. Extract more information

CO: 0x00 CI: Ox?? CT: 0x?? Cache Hit: Y/N? Value:0x??

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?

1. Extract more information

CO: 0x00 CI: 0x01 CT: 0x?? Cache Hit: Y/N? Value:0x??

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?

1. Extract more information

CO: 0x00 CI: 0x01 CT: Ox7F Cache Hit: Y/N? Value:0x??

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?

1. Extract more information
2. Go to Cache Table

CO: 0x00 CI: 0x01 CT:0x7F Cache Hit: Y Value:0x??

Carnegie Mellon

Virtual Memory

Q) What is the value of the address?

1. Extract more information
2. Go to Cache Table

CO: 0x00 CI: 0x01 CT:0x7F Cache Hit: Y Value:OxFF

Good luck!

SOON | WILL REST:YES. FOREVER SLEEP.

EARNED IT | HAVUE.

