Carnegie Mellon

Malloc Recitation

Ben Spinelli
Recitation 11: November 9, 2015

Carnegie Mellon

Agenda

m Macros / Inline functions
m Quick pointer review
m Malloc

Carnegie Mellon

Macros / Inline Functions

Carnegie Mellon

Macros

m Pre-compile time

m Define constants:
" #define NUM ENTRIES 100
= OK
m Define simple operations:
" #define twice (x) 2*x
= Not OK

= twice(x+1) becomes 2*x+1
" #define twice(x) (2*(x))
= OK

= Always wrap in parentheses; it’s a naive search-and-replace!

Carnegie Mellon

Macros

m Why macros?
= “Faster” than function calls
= Why?
" For malloc
= Quick access to header information (payload size, valid)

m Drawbacks
= Less expressive than functions
= Arguments are not typechecked, local variables
= This can easily lead to errors that are more difficult to find

Carnegie Mellon

Inline Functions

m What's the keyword inline do?
= At compile-time replaces “function calls” with code

m More efficient than a normal function call
" |Less overhead — no need to set up stack/function call
= Useful for functions that are
= Called frequently
= Small, e.g., int add(int x, int y);

Carnegie Mellon

Differences

m Macros done at pre-compile time
m Inline functions done at compile time

= Stronger type checking / Argument consistency
m Macros cannot return anything (why not?)
m Macros can have unintended side effects

= #define xsquared(x) (x*x)

= What happens when xsquared(x++) is called?

m Hard to debug macros — errors generated on expanded
code, not code that you typed

Carnegie Mellon

Macros / Inline Functions

m You will likely use both in malloc lab
m Macros are good for small tasks

= Saves work in retyping tedious calculations
® Can make code easier to understand
= HEADER(ptr) versus doing the pointer arithmetic
m Some things are hard to code in macros, so this is where
inline functions come into play

" More efficient than normal function call
" More expressive than macros

Carnegie Mellon

Pointers: casting, arithmetic, and
dereferencing

Carnegie Mellon

Pointer casting

m Cast from
= <type_a>* to <type_b>*
= Gives back the same value
= Changes the behavior that will happen when dereferenced
= <type_a>* to integer/ unsigned int
= Pointers are really just 8-byte numbers
= Taking advantage of this is an important part of malloc lab
= Be careful, though, as this can easily lead to errors
" integer/ unsigned int to <type_a>*

10

Carnegie Mellon

Pointer arithmetic

m The expression ptr + a doesn’t mean the same thing
as it would if ptr were an integer.

m Example:
type a* pointer = .;
(void *) pointer2 = (void *) (pointer + a);

m This is really computing:
" pointer2 = pointer + (a * sizeof (type a))
" lea (pointer, a, sizeof(type a)), polinter2;

m Pointer arithmetic on void* is undefined

11

Carnegie Mellon

Pointer arithmetic

m int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1;

m char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1;

m int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));

m char * ptr = (char *)0x12341230;
void * ptr2 = ptr + 1;

m char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1;

12

Carnegie Mellon

Pointer arithmetic

B int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1; //ptr2 is 0x12341234

m char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1; //ptr2 is 0x12341231

B int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341231

m char * ptr = (char *)0x12341230;
void * ptr2 = ptr + 1; //ptr2 is 0x12341231

m char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1; //ptr2 is still 0x12341231

13

Carnegie Mellon

More pointer arithmetic

@ int ** ptr (int **)0x12341230;
int * ptr2 = (int *) (ptr + 1);

m char ** ptr = (char **)0x12341230;
short * ptr2 = (short *) (ptr + 1) ;

m int * ptr = (int *)0x12341230;
void * ptr2 = &ptr + 1;

m int * ptr = (int *)0x12341230;
void * ptr2 = ((void *) (*ptr + 1));

m This is on a 64-bit machine!

14

Carnegie Mellon

More pointer arithmetic

(int **)0x12341230;
(int *) (ptr + 1); //ptr2 = 0x12341238

m int ** ptr
int * ptr2

m char ** ptr = (char **)0x12341230;
short * ptr2 = (short *) (ptr + 1);
//ptr2 = 0x12341238

m int * ptr = (int *)0x12341230;
void * ptr2 = &ptr + 1;//ptr2 = ?2?
//ptr2 is actually 8 bytes higher than the address of
the variable ptr, which is somewhere on the stack

m int * ptr = (int *)0x12341230;
void * ptr2 = ((void *) (*ptr + 1)); //ptr2 = 27
//ptr2 is one plus the value at 0x12341230
" (so undefined, but it probably segfaults)

15

Carnegie Mellon

Pointer dereferencing

m Basics

" |t must be a POINTER type (or cast to one) at the time of
dereference

= Cannot dereference expressions with type void*
= Dereferencing a t * evaluates to a value with type t

16

Carnegie Mellon

Pointer dereferencing

m What gets “returned?”

int * ptrl = malloc(sizeof(int)) ;
*ptrl = Oxdeadbeef;

int vall = *ptrl;
(int) *((char *) ptrl);

int val2

What are vall and val2?

17

Carnegie Mellon

Pointer dereferencing

m What gets “returned?”

int * ptrl = malloc(sizeof(int)) ;
*ptrl = Oxdeadbeef;

int vall = *ptrl;
int val2 = (int) *((char *) ptrl);

// vall = Oxdeadbeef;

// val2 = Oxffffffef;
What happened??

18

Carnegie Mellon

Malloc

19

Carnegie Mellon

Malloc basics

m What is dynamic memory allocation?

m Terms you will need to know
" malloc/ calloc / realloc
= free
= sbrk
= payload
= fragmentation (internal vs. external)
" coalescing
= Bi-directional
= I[mmediate vs. Deferred

20

Carnegie Mellon

Allocation Example

Pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

P4 = malloc(2)

21

Carnegie Mellon

Fragmentation

m Internal fragmentation
= Result of payload being smaller than block size.
" void * ml = malloc(3); void * ml = malloc(3);

"= ml,m2 both have to be aligned to 8 bytes...

m External fragmentation

22

Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

pd = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests

® Thus, difficult to measure

23

Carnegie Mellon

Implementation Hurdles

How do we know where the blocks are?
How do we know how big the blocks are?
How do we know which blocks are free?

Remember: can’t buffer calls to malloc and free... must
deal with them real-time.

m Remember: calls to £ree only takes a pointer, not a
pointer and a size.

m Solution: Need a data structure to store information on
the “blocks”

"= Where do | keep this data structure?

= We can’t allocate a space for it, that’s what we are writing!

24

Carnegie Mellon

The data structure

m Requirements:

" The data structure needs to tell us where the blocks are, how big
they are, and whether they’re free

= We need to be able to CHANGE the data structure during calls to
malloc and free

= We need to be able to find the next free block that is “a good fit
for” a given payload

= We need to be able to quickly mark a block as free/allocated
= We need to be able to detect when we’re out of blocks.
= What do we do when we’re out of blocks?

25

Carnegie Mellon

The data structure

m It would be convenient if it worked like:

malloc struct malloc data structure;

ptr = malloc (100, &malloc data structure);

free (ptr, &malloc data structure);

m Instead all we have is the memory we’re giving out.

= All of it doesn’t have to be payload! We can use some of that for
our data structure.

26

Carnegie Mellon

The data structure

m The data structure IS your memory!

m A start:
= <h1><pll><h2> <pl2><h3> <pl3>
= What goes in the header?
= That’s your job!
= |ets say somebody calls free(p2), how can | coalesce?
= Maybe you need a footer? Maybe not?

27

Carnegie Mellon

The data structure

m Common types

= Implicit List
= Root -> blockl -> block2 -> block3 -> ...
= Explicit List

= Root -> free block 1 -> free block 2 -> free block 3 -> ...
= Segregated List
= Small-malloc root -> free small block 1 -> free small block 2 -> ...
= Medium-malloc root -> free medium block 1 -> ...
= Large-malloc root -> free block chunkl -> ...

28

Implicit List

m From the root, can traverse across blocks using headers
m Can find a free block this way

m Can take a while to find a free block

= How would you know when you have to call sbrk?

29

Explicit List

m Improvement over implicit list

m From aroot, keep track of all free blocks in a (doubly)
linked list
= Remember a doubly linked list has pointers to next and previous
m When malloc is called, can now find a free block quickly

= What happens if the list is a bunch of small free blocks but we want
a really big one?

= How can we speed this up?

30

Carnegie Mellon

Segregated List

m An optimization for explicit lists

m Can be thought of as multiple explicit lists
= What should we group by?

m Grouped by size — let’s us quickly find a block of the size
we want

m What size/number of buckets should we use?
= This is up to you to decide

31

Carnegie Mellon

Design Considerations

m | found a chunk that fits the necessary payload... should |
look for a better fit or not? (First fit vs. Best fit)

m Splitting a free block:

void* ptr = malloc(200);

free (ptr) ;
ptr = malloc(50); //use same space, then “mark” remaining
bytes as free

void* ptr = malloc(200);
free (ptr) ;

ptr = malloc(192) ;//use same space, then “mark” remaining
bytes as free??

32

Carnegie Mellon

Design Considerations

m Free blocks: address-ordered or LIFO
= \What's the difference?
" Pros and cons?

m Coalescing

= When do you coalesce?

m You will need to be using an explicit list at minimum score
points

= But don’t try to go straight to your final design, build it up
iteratively.

33

Carnegie Mellon

Heap Checker

m Part of the assignment is writing a heap checker
® This is here to help you.

= Write the heap checker as you go, don’t think of it as something to do
at the end

= A good heap checker will make debugging much, much easier

m Heap checker tips
= Heap checker should run silently until it finds an error
= Otherwise you will get more output than is useful
= You might find it useful to add a “verbose” flag, however
= Consider using a macro to turn the heap checker on and off
= This way you don’t have to edit all of the places you call it

" Thereis a built-in macro called LINE that gets replaced with
the line number it’s on

= You can use this to make the heap checker tell you where it failed

34

Carnegie Mellon

Demo

m Running Traces
m Heap checker

m Using gprof to profile

35

