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m Macros / Inline functions
m Quick pointer review
m Malloc
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Macros / Inline Functions
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Macros

m Pre-compile time

m Define constants:
" #define NUM ENTRIES 100
= OK
m Define simple operations:
" #define twice (x) 2*x
= Not OK

= twice(x+1) becomes 2*x+1
" #define twice(x) (2*(x))
= OK

= Always wrap in parentheses; it’s a naive search-and-replace!
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Macros

m Why macros?
= “Faster” than function calls
= Why?
" For malloc
= Quick access to header information (payload size, valid)

m Drawbacks
= Less expressive than functions
= Arguments are not typechecked, local variables
= This can easily lead to errors that are more difficult to find
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Inline Functions

m What's the keyword inline do?
= At compile-time replaces “function calls” with code

m More efficient than a normal function call
" |Less overhead — no need to set up stack/function call
= Useful for functions that are
= Called frequently
= Small, e.g., int add(int x, int y);
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Differences

m Macros done at pre-compile time
m Inline functions done at compile time

= Stronger type checking / Argument consistency
m Macros cannot return anything (why not?)
m Macros can have unintended side effects

= #define xsquared(x) (x*x)

= What happens when xsquared(x++) is called?

m Hard to debug macros — errors generated on expanded
code, not code that you typed
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Macros / Inline Functions

m You will likely use both in malloc lab
m Macros are good for small tasks

= Saves work in retyping tedious calculations
® Can make code easier to understand
= HEADER(ptr) versus doing the pointer arithmetic
m Some things are hard to code in macros, so this is where
inline functions come into play

" More efficient than normal function call
" More expressive than macros
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Pointers: casting, arithmetic, and
dereferencing
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Pointer casting

m Cast from
= <type_a>* to <type_b>*
= Gives back the same value
= Changes the behavior that will happen when dereferenced
= <type_a>* to integer/ unsigned int
= Pointers are really just 8-byte numbers
= Taking advantage of this is an important part of malloc lab
= Be careful, though, as this can easily lead to errors
" integer/ unsigned int to <type_a>*
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Pointer arithmetic

m The expression ptr + a doesn’t mean the same thing
as it would if ptr were an integer.

m Example:
type a* pointer = .;
(void *) pointer2 = (void *) (pointer + a);

m This is really computing:
" pointer2 = pointer + (a * sizeof (type a))
" lea (pointer, a, sizeof(type a)), polinter2;

m Pointer arithmetic on void* is undefined
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Pointer arithmetic

m int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1;

m char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1;

m int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));

m char * ptr = (char *)0x12341230;
void * ptr2 = ptr + 1;

m char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1;
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Pointer arithmetic

B int * ptr = (int *)0x12341230;
int * ptr2 = ptr + 1; //ptr2 is 0x12341234

m char * ptr = (char *)0x12341230;
char * ptr2 = ptr + 1; //ptr2 is 0x12341231

B int * ptr = (int *)0x12341230;
int * ptr2 = ((int *) (((char *) ptr) + 1));
//ptr2 is 0x12341231

m char * ptr = (char *)0x12341230;
void * ptr2 = ptr + 1; //ptr2 is 0x12341231

m char * ptr = (int *)0x12341230;
void * ptr2 = ptr + 1; //ptr2 is still 0x12341231
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More pointer arithmetic

@ int ** ptr (int **)0x12341230;
int * ptr2 = (int *) (ptr + 1);

m char ** ptr = (char **)0x12341230;
short * ptr2 = (short *) (ptr + 1) ;

m int * ptr = (int *)0x12341230;
void * ptr2 = &ptr + 1;

m int * ptr = (int *)0x12341230;
void * ptr2 = ((void *) (*ptr + 1));

m This is on a 64-bit machine!
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More pointer arithmetic

(int **)0x12341230;
(int *) (ptr + 1); //ptr2 = 0x12341238

m int ** ptr
int * ptr2

m char ** ptr = (char **)0x12341230;
short * ptr2 = (short *) (ptr + 1);
//ptr2 = 0x12341238

m int * ptr = (int *)0x12341230;
void * ptr2 = &ptr + 1;//ptr2 = ?2?
//ptr2 is actually 8 bytes higher than the address of
the variable ptr, which is somewhere on the stack

m int * ptr = (int *)0x12341230;
void * ptr2 = ((void *) (*ptr + 1)); //ptr2 = 27
//ptr2 is one plus the value at 0x12341230
" (so undefined, but it probably segfaults)
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Pointer dereferencing

m Basics

" |t must be a POINTER type (or cast to one) at the time of
dereference

= Cannot dereference expressions with type void*
= Dereferencing a t * evaluates to a value with type t

16



Carnegie Mellon

Pointer dereferencing

m What gets “returned?”

int * ptrl = malloc(sizeof(int)) ;
*ptrl = Oxdeadbeef;

int vall = *ptrl;
(int) *((char *) ptrl);

int val2

What are vall and val2?
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Pointer dereferencing

m What gets “returned?”

int * ptrl = malloc(sizeof(int)) ;
*ptrl = Oxdeadbeef;

int vall = *ptrl;
int val2 = (int) *((char *) ptrl);

// vall = Oxdeadbeef;

// val2 = Oxffffffef;
What happened??
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Malloc
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Malloc basics

m What is dynamic memory allocation?

m Terms you will need to know
" malloc/ calloc / realloc
= free
= sbrk
= payload
= fragmentation (internal vs. external)
" coalescing
= Bi-directional
= I[mmediate vs. Deferred
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Allocation Example

Pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

P4 = malloc(2)
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Fragmentation

m Internal fragmentation
= Result of payload being smaller than block size.
" void * ml = malloc(3); void * ml = malloc(3);

"= ml,m2 both have to be aligned to 8 bytes...

m External fragmentation

22



Carnegie Mellon

External Fragmentation

m Occurs when there is enough aggregate heap memory,
but no single free block is large enough

pl = malloc(4)

p2 = malloc(5)

p3 = malloc(6)

free (p2)

pd = malloc(6) Oops! (what would happen now?)

m Depends on the pattern of future requests

® Thus, difficult to measure
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Implementation Hurdles

How do we know where the blocks are?
How do we know how big the blocks are?
How do we know which blocks are free?

Remember: can’t buffer calls to malloc and free... must
deal with them real-time.

m Remember: calls to £ree only takes a pointer, not a
pointer and a size.

m Solution: Need a data structure to store information on
the “blocks”

"= Where do | keep this data structure?

= We can’t allocate a space for it, that’s what we are writing!

24



Carnegie Mellon

The data structure

m Requirements:

" The data structure needs to tell us where the blocks are, how big
they are, and whether they’re free

= We need to be able to CHANGE the data structure during calls to
malloc and free

= We need to be able to find the next free block that is “a good fit
for” a given payload

= We need to be able to quickly mark a block as free/allocated
= We need to be able to detect when we’re out of blocks.
= What do we do when we’re out of blocks?
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The data structure

m It would be convenient if it worked like:

malloc struct malloc data structure;

ptr = malloc (100, &malloc data structure);

free (ptr, &malloc data structure);

m Instead all we have is the memory we’re giving out.

= All of it doesn’t have to be payload! We can use some of that for
our data structure.
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The data structure

m The data structure IS your memory!

m A start:
= <h1><pll><h2> <pl2><h3> <pl3>
= What goes in the header?
= That’s your job!
= |ets say somebody calls free(p2), how can | coalesce?
= Maybe you need a footer? Maybe not?
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The data structure

m Common types

= Implicit List
= Root -> blockl -> block2 -> block3 -> ...
= Explicit List

= Root -> free block 1 -> free block 2 -> free block 3 -> ...
= Segregated List
= Small-malloc root -> free small block 1 -> free small block 2 -> ...
= Medium-malloc root -> free medium block 1 -> ...
= Large-malloc root -> free block chunkl -> ...
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Implicit List

m From the root, can traverse across blocks using headers
m Can find a free block this way

m Can take a while to find a free block

= How would you know when you have to call sbrk?
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Explicit List

m Improvement over implicit list

m From aroot, keep track of all free blocks in a (doubly)
linked list
= Remember a doubly linked list has pointers to next and previous
m When malloc is called, can now find a free block quickly

= What happens if the list is a bunch of small free blocks but we want
a really big one?

= How can we speed this up?
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Segregated List

m An optimization for explicit lists

m Can be thought of as multiple explicit lists
= What should we group by?

m Grouped by size — let’s us quickly find a block of the size
we want

m What size/number of buckets should we use?
= This is up to you to decide
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Design Considerations

m | found a chunk that fits the necessary payload... should |
look for a better fit or not? (First fit vs. Best fit)

m Splitting a free block:

void* ptr = malloc(200);

free (ptr) ;
ptr = malloc(50); //use same space, then “mark” remaining
bytes as free

void* ptr = malloc(200);
free (ptr) ;

ptr = malloc(192) ;//use same space, then “mark” remaining
bytes as free??
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Design Considerations

m Free blocks: address-ordered or LIFO
= \What's the difference?
" Pros and cons?

m Coalescing

= When do you coalesce?

m You will need to be using an explicit list at minimum score
points

= But don’t try to go straight to your final design, build it up
iteratively.
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Heap Checker

m Part of the assignment is writing a heap checker
® This is here to help you.

= Write the heap checker as you go, don’t think of it as something to do
at the end

= A good heap checker will make debugging much, much easier

m Heap checker tips
= Heap checker should run silently until it finds an error
= Otherwise you will get more output than is useful
= You might find it useful to add a “verbose” flag, however
= Consider using a macro to turn the heap checker on and off
= This way you don’t have to edit all of the places you call it

" Thereis a built-in macro called LINE that gets replaced with
the line number it’s on

= You can use this to make the heap checker tell you where it failed
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Demo

m Running Traces
m Heap checker

m Using gprof to profile
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