Carnegie Mellon

Midterm Review

15-213: Introduction to Computer Systems
Recitation 8: Monday, Oct. 19, 2015
Ben Spinelli

Carnegie Mellon

Agenda

m Midterm Logistics
m Brief Overview of some topics
m Practice Questions

Carnegie Mellon

Midterm

m Tues Oct 20" to Fri Oct 23th,
= Duration — Designed to be take in 80min, but you have up to 4 hrs
= |f you have not signed up for a slot online, do so now.
= You will only be allowed to take it during your slot
= Bring your student ID with you

m Note Sheet — ONE double sided 8 2 x 11 paper

= No worked out problems on that sheet
m No office hours this week
® You can still email the list

= But responses might be slow due to volume, so be proactive, and
read the book/lectures slides carefully beforehand

Midterm

m What to study?
® Chapters 1-3 and Chapter 6

m How to Study?

= Read each chapter 3 times, work practice problems and do
problems from previous exams.

® Online practice exam allows you to get a feel for the format of the
exam

= Some old practice exams include questions that use the IA32
architecture. You will only need to know x86-64 for the

midterm.

Carnegie Mellon

Bits, Bytes & Integers

m Know how to do basic bit operations by hand
= Shifting, addition, negation, and, or, xor, etc.
m If you have w bits
" What are the largest/smallest representable sighed numbers?
= What are the largest/smallest representable unsigned numbers?
= What happens to the bits when casting signed to unsigned (and
vice versa)?
m Distinguish between logical and bitwise operators

m What happens in C if you do operations on mixed types
(either different size, or signhedness?)

Carnegie Mellon

Floating Point (IEEE Format)

m Sign, Exponent, Mantissa
= (-1)Sx M x 2E
" s—sign bit
= M — Mantissa/Fraction bits
= E-—Determined by (but not equal to) exponent bits

m Bias (2k1-1)
m Three main categories of floats

= Normalized: Large values, not near zero
= Denormalized: Small values close to zero
= Special Values: Infinity/NaN

Carnegie Mellon

Floating Point (IEEE Format)
_ |Normalized _|Denormalized | Special Values _

Represents: Most numbers Tiny numbers Infinity, NaN
Exponent bits: Not those =2 000...000 111..111
E= exp — bias 1 — bias */- oo if frac =
M = 1.frac frac 000...000;

otherwise NaN

m Floating Point Rounding
= Round-up — if the spilled bits are greater than half
= Round-down —if the spilled bits are less than half
= Round to even — if the spilled bits are exactly equal to half

Carnegie Mellon

Floating point encoding. In this problem, you will work with floating point numbers based on the IEEE
floating point format. We consider two different 6-bit formats:

Format A:
e There is one sign bit s.
e There are k = 3 exponent bits. The bias is 25! — 1 = 3.

e There are n = 2 fraction bits.
Format B:

e There is one sign bit s.
e There are k = 2 exponent bits. The biasis 2! — 1 = 1.

e There are n = 3 fraction bits.

For formats A and B, please write down the binary representation for the following (use round-to-even).
Recall that for denormalized numbers, £ = 1 — bias. For normalized numbers, E' = e — bias.

Value | Format A Bits | Format B Bits

Zero 0 000 0O 0 00 000
One

1/2

— = Fall 2012

f
/

Carnegie Mellon

Assembly Loops

m Recognize common assembly instructions
m Know the uses of all registers in 64 bit systems
m Understand how different control flow is turned into
assembly
" For, while, do, if-else, switch, etc
m Be very comfortable with pointers and dereferencing
" The use of parens in mov commands.
= %rax vs. (%rax)
" The options for memory addressing modes:
= R(Rb, Ri, S)

" |ea vs. mov

Carnegie Mellon

Assembly Loop

00000000004004b6 <mystery>:

4004bo:
4004bb:
4004bd:
4004c0:
4004c4:
4004co:
4004c9:
4004cb:
4004ce:
4004d0:
4004d3:
4004d5:
4004d7:

mov
Jjmp

movslqg

lea
mov
test
Jne
add
mov
add
cmp
Jne

S0x0, Seax

4004d3 <mystery+0x1ld>
Teax, srdx

(3rdi, $rdx,4),%rcx
($rcx) , sedx

$S0x1,%dl

4004d0 <mystery+0xla>
$S0x1, $edx

sedx, (3rcx)

S0x1, $Seax

%esi, Seax

4004bd <mystery+0x7>

repz retqg

void mystery(int *array, int n)
{

inti;

for(

{
if(== 0)

10

Carnegie Mellon

Assembly — Stack

m How arguments are passed to a function
= x86-64

m Return value from a function

m How these instructions modify stack
= call

" |eave
" ret

" pop
= push

1"

Carnegie Mellon

Array Access

m A suggested method for these problems:
= Start with the C code
" Then look at the assembly Work backwards!

" Understand how in assembly, a logical 2D array is implement as a
1D array, using the width of the array as a multiplier for access

[0][0] = [0] | [O][1] = [1] | [O][2] = [2] | [OI[3] = [3]
[1][0] = [4] | [1][1] = [5] | [1](2] = [6] | [1][3] = [7]
[2][0] = [8] | [2][1] = [9] | [2][2]=[10] | [2][3]=[11]

[0][2]=0*4+2=2
[1][38]=1*4+3=7
[2][1]=2*4+1=9

[i][j]] =i * width of array + |

12

Carnegie Mellon

int arrayl[H][J];
int array2[J][H];

Find H &)

int copy array(int x, int y) {
array2[yl[x] = arrayl[x][y];:

return 1;

Suppose the above C code generates the following x86-64 assembly code:

On entry:

%edi = x
%esi =y
#

copy_array:
movslg %esi,%rsi
movslg %edi,%rdi

movqg %rsi, %rax
salqg S4, %rax
subg %rsi, %rax

addg %rdi, %rax
leaq (%rdi,%rdi,2), %rdi
addg %rsi, %rdi

movl arrayl(,%rdi,4), %edx = Fa" 2010;
movl %edx, array2(,%rax,4)
movl S1, %eax

ret

13

Carnegie Mellon

Caching Concepts

m Dimensions: S, E, B
= S: Number of sets
= E: Associativity — number of lines per set
= B: Block size — number of bytes per block (1 block per line)

m Given Values for S,E,B,m
® Find which address maps to which set
" |s it a Hit/Miss? Is there an eviction?
" Hit rate/Miss rate

m Types of misses
= Which types can be avoided?
= What cache parameters affect types/number of misses?

14

Carnegie Mellon

Questions/Advice

m Relax!
m Work Past exams!
m Email us - (15-213-staff@cs.cmu.edu)

15

