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Agenda

m Midterm Logistics
m Brief Overview of some topics
m Practice Questions
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Midterm

m Tues Oct 20" to Fri Oct 23th,
= Duration — Designed to be take in 80min, but you have up to 4 hrs
= |f you have not signed up for a slot online, do so now.
= You will only be allowed to take it during your slot
= Bring your student ID with you

m Note Sheet — ONE double sided 8 2 x 11 paper

= No worked out problems on that sheet
m No office hours this week
® You can still email the list

= But responses might be slow due to volume, so be proactive, and
read the book/lectures slides carefully beforehand



Midterm

m What to study?
® Chapters 1-3 and Chapter 6

m How to Study?

= Read each chapter 3 times, work practice problems and do
problems from previous exams.

® Online practice exam allows you to get a feel for the format of the
exam

= Some old practice exams include questions that use the IA32
architecture. You will only need to know x86-64 for the

midterm.
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Bits, Bytes & Integers

m Know how to do basic bit operations by hand
= Shifting, addition, negation, and, or, xor, etc.
m If you have w bits
" What are the largest/smallest representable sighed numbers?
= What are the largest/smallest representable unsigned numbers?
= What happens to the bits when casting signed to unsigned (and
vice versa)?
m Distinguish between logical and bitwise operators

m What happens in C if you do operations on mixed types
(either different size, or signhedness?)
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Floating Point (IEEE Format)

m Sign, Exponent, Mantissa
= (-1)Sx M x 2E
" s—sign bit
= M — Mantissa/Fraction bits
= E-—Determined by (but not equal to) exponent bits

m Bias (2k1-1)
m Three main categories of floats

= Normalized: Large values, not near zero
= Denormalized: Small values close to zero
= Special Values: Infinity/NaN
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Floating Point (IEEE Format)
_ |Normalized _|Denormalized | Special Values _

Represents: Most numbers Tiny numbers  Infinity, NaN
Exponent bits: Not those =2 000...000 111..111
E= exp — bias 1 — bias */- oo if frac =
M = 1.frac frac 000...000;

otherwise NaN

m Floating Point Rounding
= Round-up — if the spilled bits are greater than half
= Round-down —if the spilled bits are less than half
= Round to even — if the spilled bits are exactly equal to half
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Floating point encoding. In this problem, you will work with floating point numbers based on the IEEE
floating point format. We consider two different 6-bit formats:

Format A:
e There is one sign bit s.
e There are k = 3 exponent bits. The bias is 25! — 1 = 3.

e There are n = 2 fraction bits.
Format B:

e There is one sign bit s.
e There are k = 2 exponent bits. The biasis 2! — 1 = 1.

e There are n = 3 fraction bits.

For formats A and B, please write down the binary representation for the following (use round-to-even).
Recall that for denormalized numbers, £ = 1 — bias. For normalized numbers, E' = e — bias.

Value | Format A Bits | Format B Bits

Zero 0 000 0O 0 00 000
One

1/2

— = Fall 2012

f
/
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Assembly Loops

m Recognize common assembly instructions
m Know the uses of all registers in 64 bit systems
m Understand how different control flow is turned into
assembly
" For, while, do, if-else, switch, etc
m Be very comfortable with pointers and dereferencing
" The use of parens in mov commands.
= %rax vs. (%rax)
" The options for memory addressing modes:
= R(Rb, Ri, S)

" |ea vs. mov
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Assembly Loop

00000000004004b6 <mystery>:

4004bo:
4004bb:
4004bd:
4004c0:
4004c4:
4004co:
4004c9:
4004cb:
4004ce:
4004d0:
4004d3:
4004d5:
4004d7:

mov
Jjmp

movslqg

lea
mov
test
Jne
add
mov
add
cmp
Jne

S0x0, Seax

4004d3 <mystery+0x1ld>
Teax, srdx

(3rdi, $rdx,4),%rcx
($rcx) , sedx

$S0x1,%dl

4004d0 <mystery+0xla>
$S0x1, $edx

sedx, (3rcx)

S0x1, $Seax

%esi, Seax

4004bd <mystery+0x7>

repz retqg

void mystery(int *array, int n)
{

inti;

for(

{
if( == 0)
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Assembly — Stack

m How arguments are passed to a function
= x86-64

m Return value from a function

m How these instructions modify stack
= call

" |eave
" ret

" pop
= push

1"
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Array Access

m A suggested method for these problems:
= Start with the C code
" Then look at the assembly Work backwards!

" Understand how in assembly, a logical 2D array is implement as a
1D array, using the width of the array as a multiplier for access

[0][0] = [0] | [O][1] = [1] | [O][2] = [2] | [OI[3] = [3]
[1][0] = [4] | [1][1] = [5] | [1](2] = [6] | [1][3] = [7]
[2][0] = [8] | [2][1] = [9] | [2][2]=[10] | [2][3]=[11]

[0][2]=0*4+2=2
[1][38]=1*4+3=7
[2][1]=2*4+1=9

[i][j]] =i * width of array + |

12



Carnegie Mellon

int arrayl[H][J];
int array2[J][H];

Find H &)

int copy array(int x, int y) {
array2[yl[x] = arrayl[x][y];:

return 1;

Suppose the above C code generates the following x86-64 assembly code:

# On entry:

# %edi = x
# %esi =y
#

copy_array:
movslg %esi,%rsi
movslg %edi,%rdi

movqg %rsi, %rax
salqg S4, %rax
subg %rsi, %rax

addg %rdi, %rax
leaq (%rdi,%rdi,2), %rdi
addg %rsi, %rdi

movl arrayl(,%rdi,4), %edx = Fa" 2010;
movl %edx, array2(,%rax,4)
movl S1, %eax

ret
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Caching Concepts

m Dimensions: S, E, B
= S: Number of sets
= E: Associativity — number of lines per set
= B: Block size — number of bytes per block (1 block per line)

m Given Values for S,E,B,m
® Find which address maps to which set
" |s it a Hit/Miss? Is there an eviction?
" Hit rate/Miss rate

m Types of misses
= Which types can be avoided?
= What cache parameters affect types/number of misses?
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Questions/Advice

m Relax!
m Work Past exams!
m Email us - (15-213-staff@cs.cmu.edu)
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