Andrew login ID:
Full Name:

Recitation Section:

CS15-213, Fall 2008

Exam 1
Thurs. September 25, 2008

Instructions:

e Make sure that your exam is not missing any sheets, then yaitefull name, Andrew login ID, and
recitation section (A—H) on the front.

e Write your answers in the space provided for the problemolf snake a mess, clearly indicate your
final answer.

e The exam has a maximum score of 72 points.

e The problems are of varying difficulty. The point value of legcoblem is indicated. Pile up the easy
points quickly and then come back to the harder problems.

e This exam is OPEN BOOK. You may use any books or notes you like. calculators or other
electronic devices are allowed.

e Good luck!

1(8):

2 (10):

3 (12):

4 (9):

5 (6):

6 (8):

7 (11):

8 (8):

TOTAL (72):

Page 1 of 10



Problem 1. (8 points):

For this problem, assume the following:

e We are running code on amnbit machine using two’s complement arithmetic for signetegers.
e short integers are encoded usingits.

e Sign extension is performed whenevestert is cast to annt

The following definitions are used in the table below:

short sa = -6;

int b = 2*sa;
short sc = (short)b;
int Xx = -64;

unsigned ux = X;

Fill in the empty boxes in the table. If the expression is ¢asir stored in ashort , use a 4-bit binary
representation. Otherwise assume an 8-bit binary repgem The first 2 lines are given to you as
examples, and you need not fill in entries marked with “—".

Expression Decimal Representation Binary Representation
Zero 0 0000 0000
(short)0 0 0000
— —17
— 0010 1001
sa
b
sc
ux
TMax
TMax — TMin

Page 2 of 10



Problem 2. (10 points):

Assume we are using a machine where data igpe uses a 32-bit, two's complement representation, and
right shifting is performed arithmetically. Datatyfieat uses a 32-bit IEEE floating-point representation.

Consider the following definitions.

int i = hello();
float fi = i;

Answer the following questions. For each C-language esjmasdn the first column, either

1. Mark that it is TRUE of all possible values returned by fiimt hello() , andprovide an explana-
tion of why it istrue.

2. Mark that it is possibly FALSE, and provide a counter-egim

Puzzle True/False Explanation/Counter-example

i~ ~@(i>31)<0

Gl ( ~i+1)>0

i>0 =i+ (nt)fi>0

fi>0 = fi + (float) i > 0

i & 1 ==((nt) fi) & 1

Page 3 of 10



Problem 3. (12 points):

Consider the following two 8-bit floating point represeitas based on the IEEE floating point format.
Neither has a sign bit—they can only represent nonnegatiagbers.

1. Format A

e There are: = 3 exponent bits. The exponent bias is 3.
e There aren = 5 fraction bits.

2. Format B
e There arek = 5 exponent bits. The exponent bias is 15.

e There aren = 3 fraction bits.

Fill in the blanks in the table below by converting the givaeaiues in each format to the closest possible
value in the other format. Express values as whole numbegs, (E7) or as fractions (e.g., 17/64). If
necessary, you should apply the round-to-even roundirgg rul

Format A Format B
Bits Value Bits Value
011 00000 1 01111 000 1
15
%
10100 110
000 00001

Page 4 of 10



Problem 4. (9 points):

Consider the following x864 assembly code:

# On entry: %rdi = M, %esi = n
# Note: nopl is simply a nop instruction for alignment purpos
0000000000400500 <func>:

400500: 85 f6 test  %esi,%esi

400502: 7e 2a jle 40052e <func+0x2e>
400504: 31 cO xor %eax,%eax
400506: 48 8b Of mov (%ordi),%rcx
400509: 31 d2 xor %edx,%edx
40050b: Of 1f 44 00 00 nopl 0x0(%rax,%rax,1)
400510: 44 8b 01 mov (%orcx),%r8d
400513: 45 85 cO test %r8d,%r8d

400516: 7f 18 ig 400530 <func+0x30>
400518: 83 c2 01 add $0x1,%edx

40051b: 48 83 c1 04 add $0x4,%rcx

40051f; 39 c2 cmp %eax,%edx
400521: 7e ed jle 400510 <func+0x10>
400523: 83 c0 01 add $0x1,%eax

400526: 48 83 c7 08 add $0x8,%rdi

40052a: 39 c6 cmp %eax,%esi
40052c: 7f d8 ig 400506 <func+0x6>
40052e: 31 cO xor %eax,%eax
400530: f3 c3 repz retq

Fill in the blanks of the corresponding C function:

int func( M, int n) {

int i, j;
for (i = O; ;i) {
for =0, __ ;j+H){
if ( )
return
}
}
return

Page 5 of 10

es



Problem 5. (6 points):

Consider the C code below, whdfeandJ are constants declared wildefine

int array1[H][J];
int array2[J][H];

int copy_array(int x, int y) {
array2[y][x] = array1[X][y];

return 1;

Suppose the above C code generates the following x86-6/blseode:

# On entry:

# %edi = X
# %esi = y
#

copy_array:

movslg  %edi,%rdi
movslq  %esi,%rsi

movq %rdi, %rax

leaq (%orsi,%rsi,2), %rdx
salq $5, %rax

subq %rdi, %rax

leaq (%ordi,%rdx,2), %rdx
addq %rsi, %rax

movl arrayl(,%rax,4), %eax
movl %eax, array2(,%rdx,4)
movl $1, %eax

ret

What are the values ¢ andJ?

Page 6 of 10



Problem 6. (8 points):

Consider the following data structure declarations:

struct node { struct entry {

char a;
struct entry e; ,
. char b;
struct node *next; .
long c[2];

J }

Below are given four C functions and five x86-64 code blocks.

char *one(struct node *ptr){
return &(ptr->e.a)+1;

}

| A mov Ox18(%rdi), %rax |

| B|lea 0x18(%rdi), %rax \

long two(struct node *ptr){
return ((ptr->e.c)[0] = ptr->next);

}

| C|lea 0x1(%rdi), %rax |

char *three(struct node *ptr){
return &(ptr->next->e.a);

}

D | mov 0x18(%rdi), %rax
mov  %rax, 0x8(%rdi)

char four(struct node *ptr){
return ptr->e.b; [ E [ movsbl  0x1(%rdi), %rax |

}

In the following table, next to the name of each C functionitevthe name of the x86-64 block that imple-
ments it.

Function Name | Code Block

one

two

three

four

Page 7 of 10



Problem 7. (11 points):

The next problem concerns code generated by GCC for a funic@lving a switch statement. The code
uses a jump to index into the jump table:

400519: jmpg  *0x400640(,%rdi,8)
Using GDB, we extract the 8-entry jump table as:

0x400640: 0x0000000000400530
0x400648: 0x0000000000400529
0x400650: 0x0000000000400520
0x400658: 0x0000000000400529
0x400660: 0x0000000000400535
0x400668: 0x000000000040052a
0x400670: 0x0000000000400529
0x400678: 0x0000000000400530

The following block of disassembled code implements thedias of the switch statement:

# on entry: %rdi = a, %rsi = b, %rdx = ¢
400510: mov $0x5,%rax
400513: cmp $0x7,%rdi
400517: ja 400529
400519: jmpq *0x400640(,%rdi,8)
400520: mov %rdx,%rax
400523: add %orsi,%rax
400526: salq  $0x2,%rax
400529: retq
40052a: mov %rsi,%rdx
40052d: xor $Oxf,%rdx
400530: lea 0x70(%rdx),%rax
400534: retq
400535: mov $0xc,%rax
400538: retq

Page 8 of 10



Fill in the blank portions of C code below to reproduce thection corresponding to this object code. You
can assume that the first entry in the jump table is for the wéema equals 0.

long test(long a, long b, long c)
{
long answer = ;
switch(a)
{
case __
c = ;
/* Fall through */
case _
case __
answer ;
break;
case __
answer ;
break;
case __
answer ;
break;
default:
answer ;

}

return answer;

Page 9 of 10



Problem 8. (8 points):

struct {
char *a;
short b;
double c;
char d;
float e;
char f;
long g;
void *h;

} foo;

A. Show how the struct above would appear on a 32-bit Windowshime (primitives of sizé are k-
byte aligned). Label the bytes that belong to the variouddielith their names and clearly mark the
end of the struct. Use hatch marks to indicate bytes thatllaeaged in the struct but are not used.

| S

| S

+ — +

e
e
| S

| S

+ — +

-
I
-

s S S S S
s e Sy S S

+ _ +

-
I

.

B. Rearrange the above fieldsfoo to conserve the most space in the memory below. Label the byte

that belong to the various fields with their names and cleasdyk the end of the struct. Use hatch
marks to indicate bytes that are allocated in the struct teubhat used.

e

——
1
e S S s

| S

| S

+ — +

e
e
| S

| S

+ — +

-
I
-
C. How many bytes of the struct are wasted in part A?

D. How many bytes of the struct are wasted in part B?
Page 10 of 10



